
HDL Verifier™

Reference

R2015a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

HDL Verifier™ Reference
© COPYRIGHT 2003–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

August 2003 Online only New for Version 1 (Release 13SP1)
February 2004 Online only Revised for Version 1.1 (Release 13SP1)
June 2004 Online only Revised for Version 1.1.1 (Release 14)
October 2004 Online only Revised for Version 1.2 (Release 14SP1)
December 2004 Online only Revised for Version 1.3 (Release 14SP1+)
March 2005 Online only Revised for Version 1.3.1 (Release 14SP2)
September 2005 Online only Revised for Version 1.4 (Release 14SP3)
March 2006 Online only Revised for Version 2.0 (Release 2006a)
September 2006 Online only Revised for Version 2.1 (Release 2006b)
March 2007 Online only Revised for Version 2.2 (Release 2007a)
September 2007 Online only Revised for Version 2.3 (Release 2007b)
March 2008 Online only Revised for Version 2.4 (Release 2008a)
October 2008 Online only Revised for Version 2.5 (Release 2008b)
March 2009 Online only Revised for Version 2.6 (Release 2009a)
September 2009 Online only Revised for Version 3.0 (Release 2009b)
March 2010 Online only Revised for Version 3.1 (Release 2010a)
September 2010 Online only Revised for Version 3.2 (Release 2010b)
April 2011 Online only Revised for Version 3.3 (Release 2011a)
September 2011 Online only Revised for Version 3.4 (Release 2011b)
March 2012 Online only Revised for Version 4.0 (Release 2012a)
September 2012 Online only Revised for Version 4.1 (Release 2012b)
March 2013 Online only Revised for Version 4.2 (Release 2013a)
September 2013 Online only Revised for Version 4.3 (Release 2013b)
March 2014 Online only Revised for Version 4.4 (Release 2014a)
October 2014 Online only Revised for Version 4.5 (Release 2014b)
March 2015 Online only Revised for Version 4.6 (Release 2015a)

v

Contents

Blocks — Alphabetical List
1

System Objects — Alphabetical List
2

Functions — Alphabetical List
3

1

Blocks — Alphabetical List

1 Blocks — Alphabetical List

1-2

FIL Simulation
Simulate HDL code on FPGA hardware from Simulink

Description

Example of FIL Block Generated From HDL Code

The generated FIL simulation block is the communication interface between the FPGA
and your Simulink® model. It integrates the hardware into the simulation loop and
allows it to participate in simulation as any other block.

You can perform FIL simulation with the instructions found in “Perform FPGA-in-
the-Loop Simulation”. If you encounter any issues during FIL simulation, refer to
“Troubleshooting FIL” for help in diagnosing the problem.

You can use the FIL Simulation block in models running in Normal, Accelerator, or
Rapid Accelerator simulation modes. The FIL Simulation parameters are not tunable
in any of the simulation modes. For more information about these modes, see “How
Acceleration Modes Work” in the Simulink User's Guide.

Dialog Box

Use the FIL block mask to perform the following tasks:

• Download the generated FPGA programming file onto the FPGA. You must perform
this step before you can run a FIL simulation. (See “Load Programming File onto
FPGA”.)

 FIL Simulation

1-3

• Adjust FIL block settings (optional). See the sections for “Main” on page 1-3 and
“Signal Attributes” on page 1-5.

Main

Example of FIL Block Mask Main Tab (Generated From HDL Code)

On the Main tab, you have the following options and information:

• Hardware Information

• Connection: Either Ethernet or PCI Express. Some boards can use only one
connection type or the other; for example, BEEcube® miniBEE® hardware uses
only a PCI Express connection. With other boards, you may have the option of
using either connection.

• Board: The board you selected in the FPGA-in-the-Loop Wizard.
• FPGA part: Chip identification number
• FPGA project file: The name of the Xilinx® project file that was created with the

FPGA-in-the-Loop Wizard.

1 Blocks — Alphabetical List

1-4

• FPGA Programming File

This option is how you download the FPGA programming file. You can verify that
the file name in FPGA programming file name is as you expected; if it is not, you can
change it here. If you have no other changes to the block mask, click Load to initiate
the download.

• Runtime Options

• Overclocking factor

Change HDL overclocking factor for the current FIL simulation. This setting
specifies that an input value is sampled x times by the FPGA clock before
the input changes value, where x is the value you entered in this field. Select
Inherit: auto or enter an expression, variable, or function.

• Output frame size

Change the output frame size for the current FIL simulation. Specify the output
frame size as an expression, variable, or function, or specify Inherit: auto.

 FIL Simulation

1-5

Signal Attributes

Example of FIL Block Mask Signal Attributes Tab (Generated From HDL Code)

On the Signal Attributes tab, you have the following options:

• Change output sample times.

You may explicitly set sample times or use Inherit: internal rule. The internal
rule is to set the output sample times to the input base sample time divided by the
scaling factor.

• Change output data types.

You may explicitly set data types, use the default of an unscaled and unsigned data
type, or specify Inherit: auto to inherit a data type from the block's context.

1 Blocks — Alphabetical List

1-6

HDL Cosimulation
Cosimulate hardware component by communicating with HDL module instance
executing in HDL simulator

Library

HDL Verifier

Description

The HDL Cosimulation block cosimulates a hardware component by applying input
signals to and reading output signals from an HDL model under simulation in the HDL
simulator. You can use this block to model a source or sink device by configuring the
block with input or output ports only.

The tabbed panes on the block's dialog box let you configure:

• Block input and output ports that correspond to signals (including internal signals)
of an HDL module. You must specify a sample time for each output port; you can also
specify a data type for each output port.

• Type of communication and communication settings used to exchange data between
simulators.

• The timing relationship between units of simulation time in Simulink and the HDL
simulator.

• Rising-edge or falling-edge clocks to apply to your model. You can specify the period
for each clock signal.

• Tcl commands to run before and after the simulation.

 HDL Cosimulation

1-7

Compatibility with Simulink Code Generation

• HDL Coder™: The HDL Verifier HDL Cosimulation block does participate in code
generation with HDL Coder.

• Simulink Coder™: The HDL Verifier HDL Cosimulation block does not participate in
code generation with Simulink Coder for C code generation.

The HDL Cosimulation Block Panes

The Ports pane provides fields for mapping signals of your HDL design to input and
output ports in your block. The signals can be at any level of the HDL design hierarchy.

The Timescales pane lets you choose an optimal timing relationship between Simulink
and the HDL simulator. You can configure either of the following timing relationships:

• Relative timing relationship (Simulink seconds correspond to an HDL simulator-
defined tick interval)

• Absolute timing relationship (Simulink seconds correspond to an absolute unit of
HDL simulator time)

The Connection pane specifies the communications mode used between Simulink and
the HDL simulator. If you use TCP socket communication, this pane provides fields for
specifying a socket port and for the host name of a remote computer running the HDL
simulator. The Connection pane also provides the option for bypassing the cosimulation
block during Simulink simulation.

The Clocks pane lets you create optional rising-edge and falling-edge clocks that apply
stimuli to your cosimulation model.

The Simulation pane provides a way of specifying tools command language (Tcl)
commands to be executed before and after the HDL simulator simulates the HDL
component of your Simulink model. You can use the Pre-simulation commands field
on this pane for simulation initialization and startup operations, but you cannot use it to
change simulation state.

Note: You must make sure that signals being used in cosimulation have read/write
access. This rule applies to all signals on the Ports, Clocks, and Simulation panes.
Verify such access through the HDL simulator—see product documentation for details.

1 Blocks — Alphabetical List

1-8

Dialog Box

The Block Parameters dialog box consists of the following tabbed panes of configuration
options:

• “Ports Pane” on page 1-8
• “Connection Pane” on page 1-13
• “Timescales Pane” on page 1-16
• “Clocks Pane” on page 1-21
• “Simulation Pane” on page 1-24

Ports Pane

Specify fields for mapping signals of your HDL design to input and output ports in your
block. Simulink deposits an input port signal on an HDL simulator signal at the signal's
sample rate. Conversely, Simulink reads an output port signal from a specified HDL
simulator signal at the specified sample rate.

In general, Simulink handles port sample periods as follows:

• If you connect an input port to a signal that has an explicit sample period, based on
forward propagation, Simulink applies that rate to the port.

• If you connect an input port to a signal that does not have an explicit sample period,
Simulink assigns a sample period that is equal to the least common multiple (LCM) of
all identified input port sample periods for the model.

• After Simulink sets the input port sample periods, it applies user-specified output
sample times to all output ports. You must specify an explicit sample time for each
output port.

In addition to specifying output port sample times, you can force the fixed-point data
types on output ports. For example, setting the Data Type property of an 8-bit output
port to Signed and setting its Fraction Length property to 5 would force the data type
to sfix8_En5. You can not force width; the width is always inherited from the HDL
simulator.

Note: The Data Type and Fraction Length properties apply only to the following
signals:

 HDL Cosimulation

1-9

• VHDL signals of any logic type, such asSTD_LOGIC or STD_LOGIC_VECTOR

• Verilog signals of wire or reg type

You can set input/output ports in the Ports pane also. To do so, specify port as both input
and output (example shown for use with ModelSim).

If your model contains purely combinational paths, you can select Enable direct
feedthrough for HDL design with pure combinational datapath to eliminate the
one output-sample delay that occurs with using HDL Verifier blocks and Simulink. For
more information on block simulation latency and using the direct feedthrough feature to
eliminate it, see “Direct Feedthrough Cosimulation”.

1 Blocks — Alphabetical List

1-10

The list at the center of the pane displays HDL signals corresponding to ports on the
HDL Cosimulation block. Maintain this list with the buttons on the left of the pane:

• Auto Fill — Transmit a port information request to the HDL simulator. The port
information request returns port names and information from an HDL model (or
module) under simulation in the HDL simulator and automatically enters this
information into the ports list. See “Get Signal Information from HDL Simulator ” for
a detailed description of this feature.

• New — Add a new signal to the list and select it for editing.
• Delete — Remove a signal from the list.
• Up — Move the selected signal up one position in the list.
• Down — Move the selected signal down one position in the list.

To commit edits to the Simulink model, you must also click Apply after selecting
parameter values.

Note: When you import VHDL signals from the HDL simulator , HDL Verifier returns
the signal names in all capitals.

To edit a signal name, double-click on the name. Set the signal properties on the same
line and in the associated columns. The properties of a signal are as follows.

Full HDL Name
Specifies the signal path name, using the HDL simulator path name syntax.
For example (for use with Incisive), a path name for an input port might be
manchester.samp. The signal can be at any level of the HDL design hierarchy. The
HDL Cosimulation block port corresponding to the signal is labeled with the Full
HDL Name.

For rules on specifying signal/port and module path specifications in Simulink, see
“Specify HDL Signal/Port and Module Paths for Cosimulation”.

Copying Signal Path Names You can copy signal path names directly from the HDL
simulator wave window and paste them into the Full HDL Name field, using the
standard copy and paste commands in the HDL simulator and Simulink. You must
use the Path.Name view and not Db::Path.Name view. After pasting a signal path

 HDL Cosimulation

1-11

name into the Full HDL Name field, you must click the Apply button to complete
the paste operation and update the signal list.

I/O Mode
Select either Input, Output, or both.

Input designates signals of your HDL module that Simulink will drive. Simulink
deposits values on the specified the HDL simulator signal at the signal's sample rate.

Note: When you define a block input port, make sure that only one source is set up
to drive input to that signal. For example, you should avoid defining an input port
that has multiple instances. If multiple sources drive input to a single signal, your
simulation model may produce unexpected results.

Output designates signals of your HDL module that Simulink will read. For output
signals, you must specify an explicit sample time. You can also specify any data type
(except width). For details on specifying a data type, see Date Type and Fraction
Length in a following section.

Because Simulink signals do not have the semantic of tri-states (there is no 'Z' value),
you will gain no benefit by connecting to a bidirectional HDL signal directly. To
interface with bidirectional signals, you can first interface to the input of the output
driver, then the enable of the output driver and the output of the input driver. This
approach leaves the actual tri-state buffer in HDL where resolution functions can
handle interfacing with other tri-state buffers.

Sample Time
This property becomes available only when you specify an output signal. You must
specify an explicit sample time.

Sample Time represents the time interval between consecutive samples applied
to the output port. The default sample time is 1. The exact interpretation of the
output port sample time depends on the settings of the Timescales pane of the HDL
Cosimulation block. See also “Simulation Timescales ”.

Data TypeFraction Length
These two related parameters apply only to output signals.

1 Blocks — Alphabetical List

1-12

The Data Type property is enabled only for output signals. You can direct Simulink
to determine the data type, or you can assign an explicit data type (with option
fraction length). By explicitly assigning a data type, you can force fixed-point data
types on output ports of an HDL Cosimulation block.

The Fraction Length property specifies the size, in bits, of the fractional part of the
signal in fixed-point representation. Fraction Length becomes available if you do
not set the Data Type property to Inherit.

The data type specification for an output port depends on the signal width and by the
Data Type and Fraction Length properties of the signal.

Note: The Data Type and Fraction Length properties apply only to the following
signals:

• VHDL signals of any logic type, such as STD_LOGIC or STD_LOGIC_VECTOR

• Verilog signals of wire or reg type

To assign a port data type, set the Data Type and Fraction Length properties as
follows:

• Select Inherit from the Data Type list if you want Simulink to determine the
data type.

This property defaults toInherit. When you select Inherit, the Fraction
Length edit field becomes unavailable.

Simulink always double checks that the word-length back propagated by Simulink
matches the word length queried from the HDL simulator. If they do not match,
Simulink generates an error message. For example, if you connect a Signal
Specification block to an output, Simulink will force the data type specified by
Signal Specification block on the output port.

If Simulink cannot determine the data type of the signal connected to the output
port, it will query the HDL simulator for the data type of the port. As an example,
if the HDL simulator returns the VHDL data type STD_LOGIC_VECTOR for a
signal of size N bits, the data type ufixN is forced on the output port. (The implicit
fraction length is 0.)

 HDL Cosimulation

1-13

• Select Signed from the Data Type list if you want to explicitly assign a signed
fixed point data type. When you selectSigned, the Fraction Length edit field
becomes available. HDL Verifier assigns the port a fixed-point type sfixN_EnF,
where N is the signal width and F is the Fraction Length.

For example, if you specify Data Type as Signed and a Fraction Length of 5
for a 16-bit signal, Simulink forces the data type to sfix16_En5. For the same
signal with a Data Type set to Signed and Fraction Length of -5, Simulink
forces the data type to sfix16_E5.

• Select Unsigned from the Data Type list if you want to explicitly assign an
unsigned fixed point data type When you selectUnsigned, the Fraction Length
edit field becomes available. HDL Verifier assigns the port a fixed-point type
ufixN_EnF, where N is the signal width and F is the Fraction Length.

For example, if you specify Data Type as Unsigned and a Fraction Length of
5 for a 16-bit signal, Simulink forces the data type to ufix16_En5. For the same
signal with a Data Type set to Unsigned and Fraction Length of -5 , Simulink
forces the data type to ufix16_E5.

Connection Pane

This figure shows the default configuration of the Connection pane (example shown
is for use with Incisive). The block defaults to a shared memory configuration for
communication between Simulink and the HDL simulator, when they run on a single
computer.

1 Blocks — Alphabetical List

1-14

If you select TCP/IP socket mode communication, the pane displays additional properties,
as shown in the following figure.

 HDL Cosimulation

1-15

Connection Mode
If you want to bypass the HDL simulator when you run a Simulink simulation, use
these options to specify what type of simulation connection you want. Select one of
the following options:

• Full Simulation: Confirm interface and run HDL simulation (default).
• Confirm Interface Only: Connect to the HDL simulator and check for signal

names, dimensions, and data types, but do not run HDL simulation.
• No Connection: Do not communicate with the HDL simulator. The HDL

simulator does not need to be started.

With the second and third options, the HDL Verifier cosimulation interface does not
communicate with the HDL simulator during Simulink simulation.

1 Blocks — Alphabetical List

1-16

The HDL Simulator is running on this computer
Select this option if you want to run Simulink and the HDL simulator on the same
computer. When both applications run on the same computer, you have the choice of
using shared memory or TCP sockets for the communication channel between the two
applications. If you do not select this option, only TCP/IP socket mode is available,
and the Connection method list becomes unavailable.

Connection method
This list becomes available when you selectThe HDL Simulator is running
on this computer. Select Socket if you want Simulink and the HDL simulator
to communicate via a designated TCP/IP socket. Select Shared memory if you
want Simulink and the HDL simulator to communicate via shared memory. For
more information on these connection methods, see “Communications for HDL
Cosimulation”.

Host name
If you run Simulink and the HDL simulator on different computers, this text field
becomes available. The field specifies the host name of the computer that is running
your HDL simulation in the HDL simulator.

Port number or service
Indicate a valid TCP socket port number or service for your computer system (if not
using shared memory). For information on choosing TCP socket ports, see “TCP/IP
Socket Ports ”.

Show connection info on icon
When you select this option, Simulink indicates information about the selected
communication method and (if applicable) communication options information on
the HDL Cosimulation block icon. If you select shared memory, the icon displays
the string SharedMem. If you select TCP socket communication, the icon displays
the string Socket and displays the host name and port number in the format
hostname:port.

In a model that has multiple HDL Cosimulation blocks, with each communicating to
different instances of the HDL simulator in different modes, this information helps to
distinguish between different cosimulation sessions.

Timescales Pane

The Timescales pane of the HDL Cosimulation block parameters dialog box lets you
choose a timing relationship between Simulink and the HDL simulator, either manually

 HDL Cosimulation

1-17

or automatically. The following figure shows the default settings of the Timescales pane
(example shown for use with ModelSim®).

The Timescales pane specifies a correspondence between one second of Simulink time
and some quantity of HDL simulator time. This quantity of HDL simulator time can be
expressed in one of the following ways:

• Using relative timing mode. HDL Verifier defaults to relative timing mode.
• Using absolute timing mode

For more information on calculating relative and absolute timing modes, see “Defining
the Simulink and HDL Simulator Timing Relationship”.

1 Blocks — Alphabetical List

1-18

For detailed information on the relationship between Simulink and the HDL simulator
during cosimulation, and on the operation of relative and absolute timing modes, see
“Simulation Timescales ”.

The following sections describe how to specify the timing relationship, either
automatically or manually.

Automatically Specifying the Timing Relationship

To have the HDL Verifier software calculate the timing relationship for you, perform the
following steps and enter any applicable information in the Timescales pane (as shown
in the following figure).

1 Verify that the HDL simulator is running. HDL Verifier software can obtain the
resolution limit of the HDL simulator only when that simulator is running.

2 Choose whether you want to have HDL Verifier software suggest a timescale at
this time or if you want to have the software perform this calculation when the
simulation begins in Simulink.

• To have the calculation performed while you are configuring the block, click the
Timescale option, and then click Determine Timescale Now. The software
connects Simulink with the HDL simulator so that Simulink can use the HDL
simulator resolution to calculate the best timescale. The link then displays those
results to you in the Timescale Details dialog box.

Note: For the results to display, make sure the HDL simulator is running and the
design loaded for cosimulation. The simulation does not have to be running.

 HDL Cosimulation

1-19

You can accept the timescale the software suggests, or you can make changes in
the port list directly:

• If you want to revert to the originally calculated settings, click Use
Suggested Timescale.

1 Blocks — Alphabetical List

1-20

• If you want to view sample times for all ports in the HDL design, select Show
all ports and clocks.

• To have the calculation performed when the simulation begins, select
Automatically determine timescale at start of simulation, and click Apply.
You obtain the same Timescale Details dialog box when the simulation starts in
Simulink.

Note: For the results to display, make sure the HDL simulator is running and the
design loaded for cosimulation. The simulation does not have to be running.

HDL Verifier software analyzes all the clock and port signal rates from the HDL
Cosimulation block when the software calculates the scale factor.

Note: HDL Verifier software cannot automatically calculate a sample timescale
based on any signals driven via Tcl commands or in the HDL simulator. The link
software cannot perform such calculations because it cannot know the rates of these
signals.

The link software returns the sample rate in either seconds or ticks:

• If the results are in seconds, then the link software was able to resolve the timing
differences in favor of fidelity (absolute time).

• If the results are in ticks, then the link software was best able to resolve the
timing differences in favor of efficiency (relative time).

Each time you select Determine Timescale Now or Automatically determine
timescale at start of simulation, the HDL Verifier software opens an interactive
display. This display explains the results of the timescale calculations. If the link
software cannot calculate a timescale for the given sample times, adjust your sample
times in the Port List.

3 Click Apply to commit your changes.

Note: HDL Verifier does not support timescales calculated automatically from frame-
based signals.

 HDL Cosimulation

1-21

For more on the timing relationship between the HDL simulator and Simulink, see
“Simulation Timescales ”.

Manually Specifying a Relative Timing Relationship

To manually configure relative timing mode for a cosimulation, perform the following
steps:

1 Select the Timescales tab of the HDL Cosimulation block parameters dialog box.
2 Verify that Tick, the default setting, is selected. If it is not, then select it from the

list on the right.
3 Enter a scale factor in the text box on the left. The default scale factor is 1. For

example, the next figure, shows the Timescales pane configured for a relative
timing correspondence of 10 HDL simulator ticks to 1 Simulink second.

4 Click Apply to commit your changes.

Manually Specifying an Absolute Timing Relationship

To manually configure absolute timing mode for a cosimulation, perform the following
steps:

1 Select the Timescales tab of the HDL Cosimulation block parameters dialog box.
2 Select a unit of absolute time from the list on the right. The units available include

fs (femtoseconds), ps (picoseconds), ns (nanoseconds), us (microseconds), ms
(milliseconds), and s (seconds).

3 Enter a scale factor in the text box on the left. The default scale factor is 1. For
example, in the next figure, the Timescales pane is configured for an absolute
timing correspondence of 1 HDL simulator second to 1 Simulink second.

4 Click Apply to commit your changes.

Clocks Pane

You can create optional rising-edge and falling-edge clocks that apply stimuli to your
cosimulation model. To do so, use the Clocks pane of the HDL Cosimulation block.

1 Blocks — Alphabetical List

1-22

The scrolling list at the center of the pane displays HDL clocks that drive values to the
HDL signals that you are modeling, using the deposit method.

Maintain the list of clock signals with the buttons on the left of the pane:

• New — Add a new clock signal to the list and select it for editing.
• Delete — Remove a clock signal from the list.
• Up — Move the selected clock signal up one position in the list.
• Down — Move the selected clock signal down one position in the list.

To commit edits to the Simulink model, you must also click Apply.

A clock signal has the following properties.

 HDL Cosimulation

1-23

Full HDL Name
Specify each clock as a signal path name, using the HDL simulator path name
syntax. For example: /manchester/clk or manchester.clk.

For information about and requirements for path specifications in Simulink, see
“Specify HDL Signal/Port and Module Paths for Cosimulation”.

Note: You can copy signal path names directly from the HDL simulator wave
window and paste them into the Full HDL Name field, using the standard copy and
paste commands in the HDL simulator and Simulink. You must use the Path.Name
view and not Db::Path.Name view. After pasting a signal path name into the Full
HDL Name field, you must click the Apply button to complete the paste operation
and update the signal list.

Edge
Select Rising or Falling to specify either a rising-edge clock or a falling-edge clock.

Period
You must either specify the clock period explicitly or accept the default period of 2.

If you specify an explicit clock period, you must enter a sample time equal to or
greater than 2 resolution units (ticks).

If the clock period (whether explicitly specified or defaulted) is not an even integer,
Simulink cannot create a 50% duty cycle. Instead, the HDL Verifier software creates
the falling edge at

clockperiod / 2

(rounded down to the nearest integer).

Note: The Clocks pane does not support vectored signals. Signals must be logic types
with 1 and 0 values.

For instructions on adding and editing clock signals, see “Creating Optional Clocks with
the Clocks Pane of the HDL Cosimulation Block”.

1 Blocks — Alphabetical List

1-24

Simulation Pane

Specify tools command language (Tcl) commands to be executed before and after the HDL
simulator simulates the HDL component of your Simulink model (example shown for use
with ModelSim).

You may specify any valid Tcl command string. The Tcl command string you specify
cannot include commands that load an HDL simulator project or modify simulator state.
For example, the string cannot include commands such as start, stop, or restart (for
ModelSim) or run, stop, or reset (for Incisive).

Time to run HDL simulator before cosimulation starts:
Specifies the amount of time to run the HDL simulator before beginning simulation
in Simulink. Specifying this time properly aligns the signal of the Simulink block and
the HDL signal so that they can be compared and verified directly without additional
delays.

This setting consists of a PreRunTime value and a PreRunTimeUnit value.

 HDL Cosimulation

1-25

• PreRunTime: Any valid time value. The default is 0.
• PreRunTimeUnit: Specifies the units of time for PreRunTime. You can select one

of:

• Tick

• s

• ms

• us

• ns

• ps

• fs

This parameter allows HDL Verifier properly align the signal of your behavioral
block and the HDL signal so that they can be compared and verified directly without
additional delays.

Pre-simulation commands
Contains Tcl commands to be executed before the HDL simulator simulates the HDL
component of your Simulink model. You can specify one Tcl command per line in the
text box or enter multiple commands per line by appending each command with a
semicolon (;), the standard Tcl concatenation operator.

Use of this field can range from something as simple as a one-line echo command to
confirm that a simulation is running to a complex script that performs an extensive
simulation initialization and startup sequence.

Post-simulation commands
Contains Tcl commands to be executed after the HDL simulator simulates the HDL
component of your Simulink model. You can specify one Tcl command per line in the
text box or enter multiple commands per line by appending each command with a
semicolon (;), the standard Tcl concatenation operator.

Note for ModelSim Users After each simulation, it takes ModelSim time to update the
coverage result. To prevent the potential conflict between this process and the next
cosimulation session, add a short pause between each successive simulation.

1 Blocks — Alphabetical List

1-26

Creating a Tcl Script as an Alternative to Using the Simulation Pane

You can create a Tcl script that lists the Tcl commands you want to execute on the HDL
simulator, either pre- or post-simulation.

Tcl Scripts for ModelSim Users

You can create a ModelSim DO file that lists Tcl commands and then specify that file
with the ModelSim do command as follows:

do mycosimstartup.do

Or

do mycosimcleanup.do

You can include the quit -f command in an after-simulation Tcl command string or DO
file to force ModelSim to shut down at the end of a cosimulation session. Specify all after
simulation Tcl commands in a single cosimulation block and place quit at the end of the
command string or DO file.

With the exception of quit, the command string or DO file that you specify cannot
include commands that load a ModelSim project or modify simulator state. For example,
they cannot include commands such as start, stop, or restart.

Tcl Scripts for Incisive Users

You can create an HDL simulator Tcl script that lists Tcl commands and then specify
that file with the HDL simulator source command as follows:

source mycosimstartup.script_extension

Or

source mycosimcleanup.script_extension

You can include the exit command in an after-simulation Tcl script to force the HDL
simulator to shut down at the end of a cosimulation session. Specify all after simulation
Tcl commands in a single cosimulation block and place exit at the end of the command
string or Tcl script.

With the exception of the exit command, the command string or Tcl script that
you specify cannot include commands that load an HDL simulator project or modify

 HDL Cosimulation

1-27

simulator state. For example, neither can include commands such as run, stop, or
reset.

The following example shows a Tcl script when the -gui argument was used with
hdlsimmatlab or hdlsimulink:

after 1000 {ncsim -submit exit}

This next example is of a Tcl exit script to use when the -tcl argument was used with
hdlsimmatlab or hdlsimulink:

after 1000 {exit}

1 Blocks — Alphabetical List

1-28

To VCD File
Generate value change dump (VCD) file

Library

HDL Verifier

Description

The To VCD File block generates a VCD file that contains information about changes
to signals connected to the block's input ports and names the file with the specified file
name. You can use VCD files during design verification in the following ways:

• For comparing results of multiple simulation runs, using the same or different
simulator environments

• As input to post-simulation analysis tools
• For porting areas of an existing design to a new design

Using the Block Parameters dialog box, you can specify the following parameters:

• The file name to be used for the generated file
• The number of block input ports that are to receive signal data
• The timescale to relate Simulink sample times with HDL simulator ticks

VCD files can grow very large for larger designs or smaller designs with longer
simulation runs. However, the only limitation on the size of a VCD file generated by the
To VCD File block is the maximum number of signals (and symbols) supported, which is
943 (830,584).

You can use the To VCD File block in models running in Normal, Accelerator, or Rapid
Accelerator simulation modes. The To VCD File parameters are not tunable in any of

 To VCD File

1-29

the simulation modes. For more information about these modes, see “How Acceleration
Modes Work” in the Simulink User's Guide.

For a description of the VCD file format, see “VCD File Format” on page 1-31.

Note: The To VCD File block does not support framed signals.

Note: The To VCD File block is integrated into the Simulink Signal & Scope Manager.
See the Simulink User's Guide for more information on using the Signal & Scope
Manager.

However, when you add a VCD block via the Signal & Scope manager, the signal name
that appears in the vcd file may not be the one you specified. After simulation, open the
vcd file and check the signal name. You may not see the signal name you specified but
instead you may find that In_1 or similar has been used.

If you use the VCD block directly from the HDL Verifier library, the signal names match
correctly.

Graphically Displaying VCD File Data

You can graphically display VCD file data or analyze the data with postprocessing
tools. For example, the ModelSim vcd2wlf tool converts a VCD file to a WLF file that
you can view in a ModelSim wave window. Other examples of postprocessing include
the extraction of data pertaining to a particular section of a design hierarchy or data
generated during a specific time interval.

1 Blocks — Alphabetical List

1-30

Dialog Box

VCD file name
The file name to be used for the generated VCD file. If you specify a file name only,
Simulink places the file in your current MATLAB folder. Specify a complete path
name to place the generated file in a different location. If you specify the same name
for multiple To VCD File blocks, Simulink automatically adds a numeric postfix to
identify each instance uniquely.

Note: If you want the generated file to have a .vcd file type extension, you must
specify it explicitly.

Do not give the same file name to different VCD blocks. Doing so results in
invalid VCD files.

 To VCD File

1-31

Number of input ports
The number of block input ports on which signal data is to be collected. The block
can handle up to 943 (830,584) signals, each of which maps to a unique symbol in the
VCD file.

In some cases, a single input port maps to multiple signals (and symbols). This
multiple mapping occurs when the input port receives a multidimensional signal.

Because the VCD specification does not include multidimensional signals, Simulink
flattens them to a 1D vector in the file.

Timescale
Choose an optimal timing relationship between Simulink and the HDL simulator.

The timescale options specify a correspondence between one second of Simulink time
and some quantity of HDL simulator time. You can express this quantity of HDL
simulator time in one of the following ways:

• In relative terms (i.e., as some number of HDL simulator ticks). In this case, the
cosimulation operates in relative timing mode, which is the timing mode default.

To use relative mode, select Tick from the pop-up list at the label in the HDL
simulator, and enter the desired number of ticks in the edit box at 1 second in
Simulink corresponds to. The default value is 1 Tick.

• In absolute units (such as milliseconds or nanoseconds). In this case, the
cosimulation operates in absolute timing mode.

To use absolute mode, select the desired resolution unit from the pop-up list at
the label in the HDL simulator (available units are fs, ps, ns, us, ms, s),
and enter the desired number of resolution units in the edit box at 1 second in
Simulink corresponds to. Then, set the value of the HDL simulator tick by
selecting 1, 10, or 100 from the pop-up list at 1 HDL Tick is defined as and the
resolution unit from the pop-up list at defined as.

VCD File Format

The format of generated VCD files adheres to IEEE Std 1364-2001. The following table
describes the format.

Generated VCD File Format

1 Blocks — Alphabetical List

1-32

File Content Description

$date

23-Sep-2003 14:38:11

$end

Data and time the file was
generated.

$version HDL Verifier version 1.0 $ end Version of the VCD block that
generated the file.

$timescale 1 ns $ end The time scale that was used
during the simulation.

$scope module manchestermodel $end The scope of the module being
dumped.

$var wire 1 ! Original Data [0] $end

$var wire 1 " Recovered Clock [0] $end

$var wire 1 # Recovered Data [0] $end

$var wire 1 $ Data Validity [0] $end

Variable definitions. Each
definition associates a signal
with character identification
code (symbol).

The symbols are derived from
printable characters in the
ASCII character set from ! to
~.

Variable definitions also
include the variable type (wire)
and size in bits.

$upscope $end Marks a change to the next
higher level in the HDL design
hierarchy.

$enddefinitions $end Marks the end of the header
and definitions section.

#0 Simulation start time.
$dumpvars

 0!

 0"

 0#

 0$

$end

Lists the values of all defined
variables at time equals 0.

#630

 1!
The starting point of logged
value changes from checks of

 To VCD File

1-33

File Content Description

variable values made at each
simulation time increment.

This entry indicates that at
63 nanoseconds, the value
of signal Original Data
changed from 0 to 1.

.

.

.

#1160

 1#

 1$

At 116 nanoseconds the values
of signals Recovered Data
and Data Validity changed
from 0 to 1.

$dumpoff

 x!

 x"

 x#

 x$

$end

Marks the end of the file by
dumping the values of all
variables as the value x.

2

System Objects — Alphabetical List

2 System Objects — Alphabetical List

2-2

hdlverifier.FILSimulation class
Package: hdlverifier

Construct System object for FIL simulation with MATLAB

Description

The FILSimulation System object™ creates, launches, and controls FPGA execution from
MATLAB®.

Construction

hdlverifier.FILSimulation is a virtual class and cannot be instantiated directly. To use
it, launch the FPGA-in-the-Loop Wizard and generate your own custom FILSimulation
derived class. Then you can instantiate your own FIL simulation object with the
following function:

filobj = toplevel_fil.m creates a new instance of the derived class generated by
the FPGA-in-the-Loop Wizard from your legacy HDL code (where toplevel is the name
of the top-level module).

You can adjust any properties on the System object with write permission by using the
get and set methods or by setting the property directly. See “Properties” on page 2-2.

Properties

Connection

Parameters for the connection with the FPGA board

R/W Access: Read only

Default: char('UDP','192.168.0.2','00-0A-35-02-21-8A')

Attributes:

Connection type string, value UDP Example: 'UDP'

 hdlverifier.FILSimulation class

2-3

Board IP address string Example: '192.168.0.2'
Board MAC address
(optional)

string Example: '00-0A-35-02-21-8A'

DUTName

DUT top level name

R/W Access: Read only

Default: ''

Attributes:

Name of DUT top
level

string Example: 'inverter_top'

FPGABoard

String containing FPGA board name

R/W Access: Read only

Default: ''

FPGAProgrammingFile

Path to the programming file for the FPGA

R/W Access: Read and write

Default: ''

Attributes:

Path name string Example: 'c:\work\filename'

FPGAVendor

Name of the FPGA chip vendor

R/W Access: Read only

Default: 'Xilinx'

2 System Objects — Alphabetical List

2-4

Attributes:

Chip vendor name string Examples: 'Altera', 'Xilinx'

InputBitWidths

Input widths, in bits

R/W Access: Read only

Default: 0

Attributes:

Integer or vector of
integer specifying
the bit widths of the
inputs.
If you provide only
a scalar, the inputs
each have the same
bit width; otherwise
you should provide
a vector of the same
size as the number of
inputs.

integer or vector of
integers

Examples:

10

[12,6]

InputSignals

Input paths in the HDL code

R/W Access: Read only

Default: ''

Attributes:

input port name of
each input in the HDL

string or array of N
string

Examples: 'in1',
char('in1','in2')

OutputBitWidths

Output widths, in bits

 hdlverifier.FILSimulation class

2-5

R/W Access: Read only

Default: 0

Attributes:

Integer or vector of
integer specifying
the bit widths of the
outputs.
If you provide only a
scalar, the outputs
each have the same bit
width. Otherwise you
should provide a vector
of the same size as the
number of outputs.

integer or vector of
integers

Examples:

10

[12,6]

OutputDataTypes

Output data types

R/W Access: Read and write

Default: fixedpoint

Attributes:

String or array of
N string specifying
the data type of the
output.
If you only provide
one string, each of
the outputs has the
same type. Otherwise,
you should provide
an array of strings of
the same size as the
number of output.

String or array of
strings

Examples: 'logical', 'integer',
'fixedpoint'

char(‘integer’,’fixedpoint’)

2 System Objects — Alphabetical List

2-6

OutputDownsampling

Downsampling factor and phase of the outputs

R/W Access: Read and write

Default: [1,0]

Attributes:

Vector of 2 integers:
The first integer
specifies the
downsampling factor
and is positive.
The second integer
specifies the phase
and is null or positive
and inferior to the
downsampling factor.

vector Examples:

[3,1]

OutputFractionLengths

Output fraction lengths

R/W Access: Read and write

Default: 0

Attributes:

Integer or vector of
integer specifying the
fraction length of the
outputs.
If you provide only a
scalar, each output
has the same fraction
length. Otherwise you
should provide a vector
of the same size as the
number of outputs.

integer or vector of
integers

Examples:

10

[12,6]

 hdlverifier.FILSimulation class

2-7

OutputSignals

Output port name in the HDL top level

R/W Access: Read only

Default: ''

Attributes:

String or array of N
string containing the
output port name of
each output in HDL.

string or array of
strings

Examples: 'out1',
char('out1','out2')

OutputSigned

Sign of the outputs

R/W Access: Read and write

Default: false

Attributes:

Boolean or vector of
boolean specifying the
sign of the outputs.
If you provide only a
scalar, each output
has the same sign.
Otherwise, you should
provide a vector of
the same size as the
number of outputs.

Boolean of vector of
Boolean

Examples: true (signed), false
(unsigned)
[true, true, false]

OverclockingFactor

Hardware overclocking factor

R/W Access: Read and write

2 System Objects — Alphabetical List

2-8

Default: 1

Attributes:

Positive integer
specifying the
overclocking factor for
the hardware.

integer Example:

3

ScanChainPosition

Position of the FPGA in the JTAG scan chain

R/W Access: Read only

Default: 1

Attributes:

Positive integer
specifying the position
of the FPGA in the
JTAG scan chain.

integer Example:

1

SourceFrameSize

Frame size of the source (only for HDL source block)

R/W Access: Read and write

Default: 1

Attributes:

Integer specifying
the frame size of the
source when the HDL
is a source block (no
input).

integer Example:

1

 hdlverifier.FILSimulation class

2-9

Methods

clone
Create FILSimulation object with same
property values

isLocked
System object locked status for input
attributes and nontunable properties

programFPGA
Load programming file onto FPGA

release
Release connection to FPGA board and
allow changes to object

step
Run FIL simulation for set of inputs and
return output

Examples

See the Featured Example for FIL with MATLAB, FPGA-in-the-Loop simulation using
MATLAB System Object.

2 System Objects — Alphabetical List

2-10

clone
Class: hdlverifier.FILSimulation
Package: hdlverifier

Create FILSimulation object with same property values

Syntax

newfilobj = clone(filobj)

Description

newfilobj = clone(filobj) creates another instance of the System object, filobj,
with the same property values. The clone method creates a new unlocked object with
uninitialized states.

Input Arguments

filobj

Instance of FILSimulation

Output Arguments

newfilobj

New FILSimulation System object with the same property values as the original System
object. The new unlocked object contains uninitialized states.

 isLocked

2-11

isLocked
Class: hdlverifier.FILSimulation
Package: hdlverifier

System object locked status for input attributes and nontunable properties

Syntax

L = isLocked(filobj)

Description

L = isLocked(filobj) returns a logical value, L, which indicates whether the
input attributes and nontunable properties are locked for the FIL simulation System
object, filobj. The System object performs an internal initialization the first time
the step method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and input data type. After the
initialization is complete, isLocked method returns a true value.

Input Arguments

filobj

Instance of FIL simulation

Output Arguments

L

Logical value. Either 1 (true) or 0 (false).

2 System Objects — Alphabetical List

2-12

programFPGA
Class: hdlverifier.FILSimulation
Package: hdlverifier

Load programming file onto FPGA

Syntax

programFPGA(filobj)

Description

programFPGA(filobj) loads the FPGA through the JTAG cable using the
FILSimulation property information from ProgrammingFile, ScanChainPosition and
BoardName.

Input Arguments

filobj

Instance of FILSimulation

 release

2-13

release
Class: hdlverifier.FILSimulation
Package: hdlverifier

Release connection to FPGA board and allow changes to object

Syntax

release(filobj)

Description

release(filobj) releases system resources (such as memory, file handles or hardware
connections) of System object, filobj. It also allows all its properties and input
characteristics to be changed.

Input Arguments

filobj

Instance of FILSimulation

2 System Objects — Alphabetical List

2-14

step

Class: hdlverifier.FILSimulation
Package: hdlverifier

Run FIL simulation for set of inputs and return output

Syntax

[hdloutputs] = step(filobj,[hdlinputs])

Description

[hdloutputs] = step(filobj,[hdlinputs]) connects to the FPGA, writes
hdlinputs to the FPGA and reads hdloutputs from the FPGA.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

Input Arguments

filobj

Instance of FILSimulation

hdlinputs

Set of inputs to run on FPGA

 step

2-15

Output Arguments

hdloutputs

Set of outputs returned by the FPGA

2 System Objects — Alphabetical List

2-16

clone
Create HDLCosimulation object with same property values

Syntax

newcosimobj = clone(cosimobj)

Description

newcosimobj = clone(cosimobj) creates another instance of the System object,
cosimobj, with the same property values. The clone method creates a new unlocked
object with uninitialized states.

Input Arguments

cosimobj

Instance of HDLCosimulation System object

Output Arguments

newcosimobj

New HDL Cosimulation System object with the same property values as the original
System object. The new unlocked object contains uninitialized states.

Examples

• Verifying Viterbi Decoder Using MATLAB System Object and Mentor Graphics
ModelSim

• Verifying Viterbi Decoder Using MATLAB System Object and Cadence Incisive

 clone

2-17

See Also
hdlverifier.HDLCosimulation | hdlverifier.HDLCosimulation.display
| hdlverifier.HDLCosimulation.isLocked
| hdlverifier.HDLCosimulation.release |
hdlverifier.HDLCosimulation.reset | hdlverifier.HDLCosimulation.set |
hdlverifier.HDLCosimulation.step

2 System Objects — Alphabetical List

2-18

display
Display visible properties and their values

Syntax

display(cosimobj)

Description

display(cosimobj) creates another instance of the System object, cosimobj, with the
same property values. The clone method creates a new unlocked object with uninitialized
states.

Input Arguments

cosimobj

Instance of HDLCosimulation

Examples

• Verifying Viterbi Decoder Using MATLAB System Object and Mentor Graphics
ModelSim

• Verifying Viterbi Decoder Using MATLAB System Object and Cadence Incisive

See Also
hdlverifier.HDLCosimulation | hdlverifier.HDLCosimulation.clone
| hdlverifier.HDLCosimulation.isLocked
| hdlverifier.HDLCosimulation.release |
hdlverifier.HDLCosimulation.reset | hdlverifier.HDLCosimulation.set |
hdlverifier.HDLCosimulation.step

 hdlverifier.HdlCosimulation System object

2-19

hdlverifier.HdlCosimulation System object
Package: hdlverifier

Construct System object for HDL cosimulation with MATLAB

Description

The HDL Cosimulation System object cosimulates MATLAB and a hardware component.
It does so by applying input signals to and reading output signals from an HDL model
under simulation in the HDL simulator. You can use this object to model a source or sink
device by configuring the object with input or output ports only.

Construction

h = HDLCosimulation(Name,Value) creates a new instance of HDLCosimulation
with additional options specified by one or more Name,Value pair arguments. Name can
also be a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

h = hdlcosim(Name,Value) creates a new instance of HDLCosimulation using a
shortcut constructor.

The Cosimulation Wizard creates an HDL Cosimulation System object using existing
HDL code. This workflow creates an HDL launch script for easier startup.

Properties

Connection

Parameters for the connection with the HDL simulator.

• The first element is the connection type ('SharedMemory','Socket'). If shared
memory is used, then port number and host name are not applicable.

• The second element is the port number, which must be a positive integer. Optional. It
is set to 4449 if not otherwise specified.

2 System Objects — Alphabetical List

2-20

• The third element is the host name of the HDL session. Optional. Set to localhost if
not specified.

Default: {'SharedMemory'}

Example values:

{'SharedMemory'}

{'Socket'}

{'Socket',1234}

{'Socket',1234,'hostname'}

FrameBasedProcessing

Note: FrameBasedProcessing property will be removed in a future release. Sample
mode or frame mode is automatically detected based on the size of the inputs during the
step method execution.

Enable frame-based processing

Default: false

Example values:

true/false

InputSignals

Input paths in the HDL code

Default: ''

Example values:

'/top/in1'

{'/top/in1','/top/in2'}

OutputFractionLengths

Output fraction lengths. Must be an integer or vector of integer specifying the fraction
length of the outputs. If you provide only a scalar, all the outputs are of the same type.
Otherwise, provide a vector of the same size as the number of outputs.

 hdlverifier.HdlCosimulation System object

2-21

Default: 0

Example values:

10

[12,6]

OutputSignals

Output paths in the HDL code

Default: ''

Example values:

'/top/out1'

{'/top/out1','/top/out2'}

OutputSigned

Output sign. Must be a boolean or vector of boolean specifying the sign of the outputs. If
you provide only a scalar, all outputs are of the same type. Otherwise, provide a vector of
the same size as the number of outputs.

Default: false

Example values:

true/false

[true,true]

PreRunTime

Delay in HDL simulator before the cosimulation starts

Default: {0,'ns'}

Example values:

{10,'fs'}

{25,'ps'}

{4,'ns'}

{500,'us'}

{5,'ms'}

2 System Objects — Alphabetical List

2-22

{1,’s’}

SampleTime

Elapsed time in the HDL simulator between each call to step

Default: {10,'ns'}

Example values:

{10,'fs'}

{25,'ps'}

{4,'ns'}

{500,'us'}

{5,'ms'}

{1,'s'}

TclPostSimulationCommand

Tcl post-simulation command executed by the HDL simulator during a call to release

Default: ''

Example value:

'echo "done"'

TclPreSimulationCommand

Tcl presimulation command executed by the HDL simulator during the first call to step
or during the next call to step after a call to release

Default: ''

Example value:
'force /top/rst 1 0, 0 2 ns; force /top/clk 0 0, 1 1 ns -repeat 2 ns'

Methods

clone
Create HDLCosimulation object with same
property values

 hdlverifier.HdlCosimulation System object

2-23

display
Display visible properties and their values

isLocked
System object locked status for input
attributes and nontunable properties

release
Release connection to HDL simulator and
allow changes to object

reset
Unlock object, release connection to HDL
simulator, and reset internal state

set
Change System object property value

step
Run HDL simulator for set of inputs and
return output

Examples

See the following Featured Examples:

• Verify Viterbi Decoder Using MATLAB System Object and Mentor Graphics®

ModelSim
• Verify Viterbi Decoder Using MATLAB System Object and Cadence Incisive®

2 System Objects — Alphabetical List

2-24

isLocked
System object locked status for input attributes and nontunable properties

Syntax

L = isLocked(cosimobj)

Description

L = isLocked(cosimobj) returns a logical value, L, which indicates whether the
input attributes and nontunable properties are locked for the HDL Cosimulation System
object, cosimobj. The System object performs an internal initialization the first time
the step method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and input data type. After the
initialization is complete, isLocked method returns a true value.

Input Arguments

cosimobj

Instance of HDLCosimulation

Output Arguments

L

Logical value. Either 1 (true) or 0 (false).

Examples

• Verifying Viterbi Decoder Using MATLAB System Object and Mentor Graphics
ModelSim

 isLocked

2-25

• Verifying Viterbi Decoder Using MATLAB System Object and Cadence Incisive

See Also
hdlverifier.HDLCosimulation | hdlverifier.HDLCosimulation.clone
| hdlverifier.HDLCosimulation.display
| hdlverifier.HDLCosimulation.release |
hdlverifier.HDLCosimulation.reset | hdlverifier.HDLCosimulation.set |
hdlverifier.HDLCosimulation.step

2 System Objects — Alphabetical List

2-26

release
Release connection to HDL simulator and allow changes to object

Syntax

release(cosimobj)

Description

release(cosimobj) releases system resources (such as memory, file handles or
hardware connections) of System object, cosimobj. It also allows all its properties and
input characteristics to be changed.

Input Arguments

cosimobj

Instance of HDLCosimulation

Examples

• Verifying Viterbi Decoder Using MATLAB System Object and Mentor Graphics
ModelSim

• Verifying Viterbi Decoder Using MATLAB System Object and Cadence Incisive

See Also
hdlverifier.HDLCosimulation | hdlverifier.HDLCosimulation.clone
| hdlverifier.HDLCosimulation.display |
hdlverifier.HDLCosimulation.isLocked |
hdlverifier.HDLCosimulation.reset | hdlverifier.HDLCosimulation.set |
hdlverifier.HDLCosimulation.step

 reset

2-27

reset
Unlock object, release connection to HDL simulator, and reset internal state

Syntax

reset(cosimobj)

Description

reset(cosimobj) unlocks the System object, cosimobj, and releases its connection
with the HDL simulator. It also resets all internal states.

Input Arguments

cosimobj

Instance of HDLCosimulation

Examples

• Verifying Viterbi Decoder Using MATLAB System Object and Mentor Graphics
ModelSim

• Verifying Viterbi Decoder Using MATLAB System Object and Cadence Incisive

See Also
hdlverifier.HDLCosimulation | hdlverifier.HDLCosimulation.clone
| hdlverifier.HDLCosimulation.display
| hdlverifier.HDLCosimulation.isLocked
| hdlverifier.HDLCosimulation.release |
hdlverifier.HDLCosimulation.reset | hdlverifier.HDLCosimulation.set |
hdlverifier.HDLCosimulation.step

2 System Objects — Alphabetical List

2-28

set

Change System object property value

Syntax

set(cosimobj,'PropertyName',PropertyValue)

Description

set(cosimobj,'PropertyName',PropertyValue) sets the specified Property of
System object, cosimobj, with the specified value, after validating the new value.

Input Arguments

cosimobj

Instance of HDLCosimulation

PropertyName

Object property name. See “Properties” for hdlverifier.HDLCosimulation.

PropertyValue

Object property value for PropertyName. See “Properties” for
hdlverifier.HDLCosimulation.

Examples

• Verifying Viterbi Decoder Using MATLAB System Object and Mentor Graphics
ModelSim

• Verifying Viterbi Decoder Using MATLAB System Object and Cadence Incisive

 set

2-29

See Also
hdlverifier.HDLCosimulation | hdlverifier.HDLCosimulation.clone
| hdlverifier.HDLCosimulation.display
| hdlverifier.HDLCosimulation.isLocked
| hdlverifier.HDLCosimulation.release |
hdlverifier.HDLCosimulation.reset | hdlverifier.HDLCosimulation.step

2 System Objects — Alphabetical List

2-30

step

Run HDL simulator for set of inputs and return output

Syntax

[hdloutputs] = step(cosimobj,hdlinputs)

Description

[hdloutputs] = step(cosimobj,hdlinputs) connects to the HDL simulator, writes
hdlinputs to the HDL simulator and reads hdloutputs from the HDL simulator. The
elapsed HDL simulator time between each call to step is defined by the SampleTime
property.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

Input Arguments

cosimobj

Instance of HDLCosimulation

hdlinputs

Set of inputs for HDL simulator to run

Default:

 step

2-31

Output Arguments

hdloutputs

Set of outputs returned by HDL simulator

Examples

• Verifying Viterbi Decoder Using MATLAB System Object and Mentor Graphics
ModelSim

• Verifying Viterbi Decoder Using MATLAB System Object and Cadence Incisive

See Also
hdlverifier.HDLCosimulation | hdlverifier.HDLCosimulation.clone
| hdlverifier.HDLCosimulation.display
| hdlverifier.HDLCosimulation.isLocked
| hdlverifier.HDLCosimulation.release |
hdlverifier.HDLCosimulation.reset | hdlverifier.HDLCosimulation.set

3

Functions — Alphabetical List

3 Functions — Alphabetical List

3-2

breakHdlSim
Execute stop command in HDL simulator from MATLAB

Syntax

breakHdlSim()

breakHdlSim('portNumber')

breakHdlSim('portNumber','hostName')

Description

breakHdlSim() executes a stop command on the HDL simulator on the local host. Use
this function to unblock the HDL simulator after the HDL simulator has loaded the
simulation but before Simulink starts the simulation. If, after starting the simulation,
you decide to add more signals to the waveform window, use this function to unblock the
HDL simulator first. When you usebreakHdlSim, make sure that you specify the current
connection information to the HDL simulator.

breakHdlSim('portNumber') executes a stop command on the HDL simulator on port
portNumber.

breakHdlSim('portNumber','hostName') executes a stop command on the HDL
simulator on host hostName.

Examples

Stop the HDL simulator that is currently running on the local host.

>> breakHdlSim()

Stop the HDL simulator that is currently running on port 1234.

>> breakHdlSim('1234')

Stop the HDL simulator that is currently running on port 1234 and host "mylinux".

>> breakHdlSim('1234', 'mylinux')

 breakHdlSim

3-3

See Also
pingHdlSim

3 Functions — Alphabetical List

3-4

cosimWizard
Run HDL Cosimulation Wizard

Syntax
cosimWizard

Description
cosimWizard invokes the HDL Cosimulation Wizard. You provide the HDL code and
related input data for creating a MATLAB function, MATLAB System object, or Simulink
block for cosimulation with the HDL simulator. The supported HDL simulators include
ModelSim and Questa® from Mentor Graphics and Cadence Incisive.

• For cosimulation between Simulink and the HDL simulator: The Cosimulation
Wizard generates an HDL cosimulation block for use in a Simulink model, and
MATLAB scripts that compile an HDL design and launch the HDL simulator.

• For cosimulation between MATLAB and the HDL simulator using MATLAB System
objects: The Cosimulation Wizard generates a cosimulation System object customized
to your design that compiles the HDL code and launches the HDL simulator.

• For cosimulation between MATLAB and the HDL simulator with MATLAB callback
functions: The Cosimulation Wizard generates templates for MATLAB component or
testbench callback functions and MATLAB scripts that compile the HDL design and
launch the HDL simulator.

Examples
Invoke HDL Cosimulation Wizard:

>>cosimWizard

The Cosimulation Wizard starts.

More About
• “Import HDL Code for MATLAB Function”

 cosimWizard

3-5

• “Import HDL Code for MATLAB System Object”
• “Import HDL Code for HDL Cosimulation Block”

3 Functions — Alphabetical List

3-6

dec2mvl
Convert decimal integer to binary string

Syntax

dec2mvl(d)

dec2mvl(d,n)

Description

dec2mvl(d) returns the binary representation of d as a multivalued logic string. d must
be an integer smaller than 2^52.

dec2mvl(d,n) produces a binary representation with at least n bits.

Examples

The following function call returns the string '10111':

>>dec2mvl(23)

The following function call returns the string '01001':

>>dec2mvl(-23)

The following function call returns the string '11101001':

>>dec2mvl(-23,8)

See Also
mvl2dec

 dpigen

3-7

dpigen
Generate SystemVerilog DPI component from MATLAB function

Syntax

dpigen fcn -args args

dpigen fcn -args args -testbench tb_name

dpigen fcn -args args -options

dpigen fcn -args args files

dpigen fcn -args args -c

dpigen fcn -args args -launchreport

dpigen fcn -args args -testbench tb_name -options files -c -

launchreport

Description

dpigen fcn -args args generates a SystemVerilog DPI component shared library
from MATLAB function fcn and all the functions that fcn calls.

The option -args args specifies the type of inputs the generated code can accept. The
generated DPI component is specialized to the class and size of the inputs. Using this
information, dpigen generates a DPI component that emulates the behavior of the
MATLAB function.

fcn and —args args are required input arguments. The MATLAB function should be on
the MATLAB path or in the current directory.

dpigen fcn -args args -testbench tb_name additionally generates a test
bench for the SystemVerilog DPI component. The MATLAB test bench should be on the
MATLAB path or in the current directory.

dpigen fcn -args args -options specifies additional options for the compiler and
code generation.

dpigen fcn -args args files specifies custom files to include in the generated
code.

3 Functions — Alphabetical List

3-8

dpigen fcn -args args -c generates C code only.

dpigen fcn -args args -launchreport generates and launches a code generation
report.

dpigen fcn -args args -testbench tb_name -options files -c -

launchreport generates a SystemVerilog DPI component shared library with all the
above options. Zero or more optional arguments may appear in any order.

Examples

Generate DPI Component and Test Bench

Generate a DPI component and test bench for the function fun.m and its associated test
bench, fun_tb.m. The dpigen function compiles the component automatically using the
default compiler. The -args option specifies that the first input type is a double and the
second input type is an int8.

dpigen -testbench fun_tb.m -I E:\HDLTools\ModelSim\10.2c-mw-0\questa_sim\include fun.m

 -args {double(0),int8(0)}

Generating DPI-C Wrapper fun_dpi.c

Generating DPI-C Wrapper header file fun_dpi.h

Generating SystemVerilog module fun_dpi.sv

Generating makefiles for: fun_dpi

Compiling the DPI Component

Generating SystemVerilog test bench fun_tb.sv

Generating test bench simulation script for Mentor Graphics ModelSim/QuestaSim run_tb_mq.do

Generating test bench simulation script for Cadence Incisive run_tb_ncsim.sh

Generating test bench simulation script for Synopsys VCS run_tb_vcs.sh

Generate DPI Component and Test Bench (No Compiling)

Generate a DPI component and a test bench for the function fun.m and its associated
test bench, fun_tb.m. Use the -c option to prevent the dipgen function from compiling
the library. Send the source code output to 'MyDPIProject'.

dpigen -c -d MyDPIProject -testbench fun_tb.m fun.m -args {double(0),int8(0)}

Generating DPI-C Wrapper fun_dpi.c

Generating DPI-C Wrapper header file fun_dpi.h

Generating SystemVerilog module fun_dpi.sv

Generating makefiles for: fun_dpi

Generating SystemVerilog test bench fun_tb.sv

Generating test bench simulation script for Mentor Graphics ModelSim/QuestaSim run_tb_mq.do

Generating test bench simulation script for Cadence Incisive run_tb_ncsim.sh

 dpigen

3-9

Generating test bench simulation script for Synopsys VCS run_tb_vcs.sh

Input Arguments

fcn — Name of MATLAB function
string

Name of MATLAB function to generate the DPI component from, specified as a string.
The MATLAB function should be on the MATLAB path or in the current directory.

-args args — Data type and size of MATLAB function inputs
cell array

Data type and size of MATLAB function inputs, specified as a cell array. Specify the
input types that the generated DPI component should accept. args is a cell array
specifying the type of each function argument. (Elements are converted to types using
coder.typeof.). This argument is required.

This argument has the same functionality as the codegen function argument args.
args applies only to the function, fcn.

Example: -args {double(0),int8(0)}

-testbench tb_name — MATLAB test bench used to generate test bench for generated DPI
component
string

MATLAB test bench used to generate test bench for generated DPI component, specified
as a string. The dpigen function uses this test bench to generate a SystemVerilog test
bench along with data files and execution scripts. The MATLAB test bench should be on
the MATLAB path or in the current directory.
Example: -testbench My_Test_bench.m

-options — Compiler and code generation options
string

Compiler and codegen options, specified as strings. These options are a subset of the
options for codegen. The dpigen function gives precedence to individual command-
line options over options specified using a configuration object. If command-line options
conflict, the right-most option prevails.

3 Functions — Alphabetical List

3-10

Any number of options may be used and they may be used in any order; for example:

dpigen -c -d MyDPIProject -testbench fun_tb.m fun.m -args

{double(0),int8(0)} -launchreport

Option flag Option value

-I include_path Specifies the path to folders containing headers and
library files that may be needed for codegen, specified
as a string. Add include_path to the beginning of
the code generation path. The include path provides
directions to folders containing headers and library
files that may be needed for codegen.

For example:

-I E:\HDLTools\ModelSim\10.2c-

mw-0\questa_sim\include

include_path should not contain spaces, as this
can lead to code generation failures in certain
operating system configurations. If the path contains
non 7-bit ASCII characters, such as Japanese
characters, dpigen might not find files on this path.

When converting MATLAB code to C/C++ code,
dpigen searches the code generation path first.

Note: If you do not specify the include path for
the svdpi.h file that is located in the simulator
installation directory, you must manually modify
the generated Makefile (*.mk) and then compile the
library separately.

Alternatively, you can specify the include path with
the files input argument.

-config config Specify a custom configuration object using
coder.config('dll'). The DPI component must
be a shared library.

 dpigen

3-11

Option flag Option value

To avoid using conflicting options, do not combine
a configuration object with command-line options.
Usually the config object offers more options than the
command-line flags.

Note: Not all the options in the config object are
compatible with the DPI feature. If you try to use an
incompatible option, an error message informs you of
which options are not compatible.

-o output Specify the name of the generated component as a
string. The dpigen function adds a platform-specific
extension to this name for the shared library.

-d dir Specify the output directory. All generated files
are placed in dir. By default, files are placed in ./
codegen/dll/<function>.

For example, when dpigen compiles the function
fun.m, the generated code is placed in ./codegen/
dll/fun.

-globals globals Specify initial values for global variables in MATLAB
files. Use the values in the cell array GLOBALS to
initialize global variables in the function that you
compile. The cell array provides the name and initial
value of each global variable.

If you do not provide initial values for global
variables using the -globals option, dpigen checks
for the variables in the MATLAB global workspace. If
you do not supply an initial value, dpigen generates
an error.

MATLAB Coder and MATLAB each have their own
copies of global data. For consistency, synchronize
their global data whenever the two products interact.
If you do not synchronize the data, their global
variables might differ.

3 Functions — Alphabetical List

3-12

files — Custom files to include in the generated code
string

Custom files to include in the generated code, each file specified as a string. The files
build along with the MATLAB function specified by fcn. List each file separately,
separated by a space. The following extensions are supported.

File Type Description

.c Custom C file

.cpp Custom C++ file

.h Custom header file (included by all generated files)

.o Object file

.obj Object file

.a Library file

.so Library file

.lib Library file

In Windows®, if your MATLAB function contains matrices or vectors in its output
or input arguments, then you must specify the library (.lib) that contains the DPI
definitions, such as libvsim.lib for use withModelSim. Otherwise, you must manually
modify the generated Makefile (*.mk) and then compile the library separately.

Example: dpigen -testbench MatrixFun_tb.m E:\HDLTools\ModelSim\10.2c-
mw-0\questa_sim\win64\libvsim.lib MatrixFun.m -args zeros(2,3)

-c — Option to generate C code only
string

Option to generate C code without compiling the DPI component, specified as the string -
c. If you do not use the -c option, dpigen tries to compile the DPI component using the
default compiler. To select a different compiler , use the -config option and refer to the
codegen documentation for instructions on specifying the different options.

-launchreport — Option to generate and launch a code generation report
string

Option to generate and launch a code generation report, specified as the string -
launchreport.

 dpigen

3-13

See Also
codegen

3 Functions — Alphabetical List

3-14

filWizard
Run FPGA-in-the-Loop Wizard

Syntax

filWizard

filWizard(FILENAME)

Description

filWizard invokes the FPGA-in-the-Loop (FIL) Wizard. You provide the HDL code and
all related information for creating a FIL block for simulation with an FPGA device.

filWizard(FILENAME) relaunches the FIL Wizard using information saved in the
specified FILENAME MAT-file. At the end of each FIL Wizard session, a MAT-file that
contains the session information is saved to disk. This MAT-file can be used to restore
the session later.

Examples

Invoke FPGA-in-the-Loop Wizard:

>> filWizard

The FPGA-in-the-Loop Wizard starts.

More About
• “Block Generation with the FIL Wizard”
• “System Object Generation with the FIL Wizard”
• “Perform FPGA-in-the-Loop Simulation”

 hdldaemon

3-15

hdldaemon
Control MATLAB server that supports interactions with HDL simulator

Syntax

hdldaemon

hdldaemon(Name, Value)

hdldaemon(Option)

s=hdldaemon(___)

Description

hdldaemon starts the HDL Link MATLAB server using shared memory inter-process
communication. Only one hdldaemon per MATLAB session can be running at any given
time.

hdldaemon(Name, Value) uses additional options specified by one or more Name,
Value pair arguments.

• If you do not specify memory type, the server starts using shared memory.
• If you specify the socket Name, Value argument, the server starts using socket

memory..

Note: If server is already running, issuing hdldaemon with these arguments shuts down
the current server and then starts a new server session using shared memory (unless
socket is specified).

hdldaemon(Option) accepts a single optional input. Only one option may be specified
in a single call. You must establish the server connection before calling hdldaemon with
one of these options.

s=hdldaemon(___) returns the server status connection in structure s, using any of
the input arguments in the previous syntaxes.

3 Functions — Alphabetical List

3-16

Examples

Start MATLAB Server With Shared Memory

Start the MATLAB server using shared memory communication and use an integer
representation of time.

hdldaemon('time', 'int64')

HDLDaemon shared memory server is running with 0 connections

Start MATLAB Server With Socket Communication

Start MATLAB server and specify socket communication on port 4449.

hdldaemon('socket', '4449')

HDLDaemon socket server is running on port 4449 with 0 connections

Check Server Status

With one or more connections:

hdldaemon('status')

HDLDaemon socket server is running on port 4449 with 1 connections

With no connections:

hdldaemon('status')

HDLDaemon shared memory server is running with 0 connections

Server has not been started:

hdldaemon('status')

HDLDaemon is NOT running

Check Connection Information

Check connection information for communication mode, number of existing connections,
and the interprocess communication identifier (ipc_id) the MATLAB server is using for
a link.

Returned message for a socket connection:

 hdldaemon

3-17

x=hdldaemon('status')

x =

 comm: 'sockets'

 connections: 0

 ipc_id: '4449'

Returned message for a shared memory connection:

x=hdldaemon('status')

x =

 comm: 'shared memory'

 connections: 0

 ipc_id: '\\.\pipe\E505F434-F023-42a6-B06D-DEFD08434C67'

You can examine ipc_id by entering it at the MATLAB command prompt:

x.ipc_id

 '\\.\pipe\E505F434-F023-42a6-B06D-DEFD08434C67'

Shut Down Server

Shut down server without shutting down MATLAB.

hdldaemon('kill')

HDLDaemon server was shutdown

Issue Tcl Commands

Issue simple or complex Tcl commands.

Simple example:

hdldaemon('tclcmd','puts "This is a test"')

Complex example:
tclcmd = { ['cd ',unixprojdir],...

 'vlib work',... %create library (if applicable)

 ['vcom -performdefaultbinding ' unixsrcfile1],...

 ['vcom -performdefaultbinding ' unixsrcfile2],...

 ['vcom -performdefaultbinding ' unixsrcfile3],...

 'vsimmatlab work.osc_top ',...

 'matlabcp u_osc_filter -mfunc oscfilter',...

 'add wave sim:/osc_top/clk',...

3 Functions — Alphabetical List

3-18

 'add wave sim:/osc_top/clk_enable',...

 'add wave sim:/osc_top/reset',...

 ['add wave -height 100 -radix decimal -format analog-step...

 -scale 0.001 -offset 50000 ', 'sim:/osc_top/osc_out'],...

 ['add wave -height 100 -radix decimal -format analog-step...

 -scale 0.00003125 -offset 50000 ', 'sim:/osc_top/filter1x_out'],...

 ['add wave -height 100 -radix decimal -format analog-step...

 -scale 0.00003125 -offset 50000 ', 'sim:/osc_top/filter4x_out'],...

 ['add wave -height 100 -radix decimal -format analog-step...

 -scale 0.00003125 -offset 50000 ', 'sim:/osc_top/filter8x_out'],...

 'force sim:/osc_top/clk_enable 1 0',...

 'force sim:/osc_top/reset 1 0, 0 120 ns',...

 'force sim:/osc_top/clk 1 0 ns, 0 40 ns -r 80ns',...

 };

This example is taken from "Implementing the Filter Component of an Oscillator in
MATLAB". See the full example for use of this complex Tcl command in context.

• Implementing the Filter Component of an Ocsillator in MATLAB

Input Arguments

Option — Server option to shut down MATLAB server or display server status
'kill' | 'stop' | 'status'

Server option to shut down MATLAB server or display server status, specified as one of
these strings:

'kill' Shuts down the MATLAB server without
shutting down MATLAB.

'stop' Shuts down the MATLAB server without
shutting down MATLAB. There is no
difference between using 'kill' and
'stop'.

'status' Displays status of the MATLAB server. You
can also use s=hdldaemon('status'),
which displays MATLAB server status and
returns status in structure s.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

../examples/implementing-the-filter-component-of-an-oscillator-in-matlab-1.html

 hdldaemon

3-19

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'time','int64','quiet','true' specifies time values are returned as 64-
bit integers and output messages are suppressed.

'time' — Instruction to MATLAB server on how it should send and return time values
'sec' (default) | 'int64'

Instruction to MATLAB server on how it should send and return time values, specified as
the comma-separated pair consisting of 'time' and one of these values:

'int64' Specifies that the MATLAB server send and return time values in
the MATLAB function callbacks as 64-bit integers representing the
number of simulation steps.MATLAB
See the matlabcp/matlabtb tnow parameter reference (“MATLAB
Function Syntax and Function Argument Definitions”).

'sec' Specifies that the MATLAB server sends and returns time values in
the MATLAB function callbacks as double values that HDL Verifier
scales to seconds based on the current HDL simulation resolution.

If server is already running, issuing hdldaemon with the time parameter alone will shut
down the current server and start the server up again using shared memory.
Example: 'time','int64'

'quiet' — Indicator to suppress printing diagnostic messages
'false' (default) | 'true'

Indicator to suppress printing diagnostic messages, specified as the comma-separated
pair consisting of 'quiet' and one of the following values:

'true' Suppress printing diagnostic messages.
'false' Do not suppress printing diagnostic

messages.

Errors still appear. Use this option to suppress the MATLAB server shutdown message
when using hdldaemon to get an unused socket number. If server is already running,
issuing hdldaemon with the quiet parameter alone will shut down the current server
and start the server up again using shared memory.
Example: 'quiet', 'true'

3 Functions — Alphabetical List

3-20

'socket' — TCP/IP port used for communication
'0' | string

TCP/IP port used for communication, specified as the comma-separated pair consisting
of 'socket' and a string. The string can be either '0', indicating that the host
automatically chooses a valid TCP/IP port, or an explicit port number (1024 < port <
49151) or a service (alias) name from /etc/services file.

If you specify the operating system option (0), use hdldaemon('status') to acquire the
assigned socket port number.
Example: 'socket','4449'

'tclcmd' — Tcl command transmitted to all connected clients
string

Tcl command transmitted to all connected clients, specified as any valid Tcl command
string.

The Tcl command string you specify cannot include commands that load an HDL
simulator project or modify simulator state. For example, the string cannot include
commands such as start, stop, or restart (for ModelSim) or run, stop, or reset (for
Incisive).

Note: You can issue this command only after the software establishes a server
connection.

Caution Do not call hdldaemon('tclcmd', 'Tcl command string') from inside a
matlabtb or matlabcp function. Doing so results in a race condition, and the simulator
hangs.

Example: 'tclcmd','puts' '"done"'

Output Arguments

s — Structure containing information about the connection
'comm' | 'connections' | 'ipc_id'

 hdldaemon

3-21

Structure containing information about the connection. The structure contains the
following variables:

'comm' Either 'shared memory' or 'sockets'
'connections' Number of open connections
'ipc_id' If shared memory, file system name for the shared

memory communication channel. If socket, the TCP/IP
port number.

More About
• “Starting the HDL Simulator from MATLAB”

See Also
nclaunch | vsim

3 Functions — Alphabetical List

3-22

hdlsimmatlab
Load instantiated HDL design for verification with Cadence Incisive and MATLAB

Syntax
hdlsimmatlab <instance> [<ncsim_args>]

Description

The hdlsimmatlab command loads the specified instance of an HDL design
for verification and sets up the Cadence Incisive simulator so it can establish a
communication link with MATLAB. The Cadence Incisive simulator opens a simulation
workspace as it loads the HDL design.

This command may be run from the HDL simulator prompt or from a Tcl script shell
(tclsh).

This command is issued in the HDL simulator.

Arguments
<instance>

Specifies the instance of an HDL design to load for verification.
<ncsim_args>

Specifies one or more ncsim command arguments. For details, see the description of
ncsim in the Cadence Incisive simulator documentation.

Examples

The following command loads the module instance parse from library work
for verification and sets up the Cadence Incisive simulator so it can establish a
communication link with MATLAB:

tclshell> hdlsimmatlab work.parse

 hdlsimulink

3-23

hdlsimulink
Load instantiated HDL design for cosimulation with Cadence Incisive and Simulink

Syntax
hdlsimulink <instance> [<ncsim_args>]

Description

The hdlsimulink command loads the specified instance of an HDL design for
cosimulation and sets up the Cadence Incisive simulator so it can establish a
communication link with Simulink. The Cadence Incisive simulator opens a simulation
workspace into which it loads the HDL design.

This command is issued in the HDL simulator. The communication mode is determined
by the call to nclaunch, which must be issued before you call hdlsimulink.

Argument

<instance>

Specifies the instance of an HDL design to load for cosimulation.
<ncsim_args>

Specifies one or more ncsim command arguments. Do not use -GUI, -BATCH, or -
TCL. For more information on ncsim arguments, see the description of ncsim in the
Cadence Incisive simulator documentation.

Examples

The following command loads the module instance parse from library work for
cosimulation, sets up the Cadence Incisive simulator so it can establish a communication
link with Simulink, and opens a Tcl script shell:

tclshell> hdlsimulink -gui work.parse

3 Functions — Alphabetical List

3-24

matlabcp
Associate MATLAB component function with instantiated HDL design

Syntax
matlabcp <instance>

[<time-specs>]

[-socket <tcp-spec>]

[-rising <port>[,<port>...]]

[-falling <port> [,<port>,...]]

[-sensitivity <port>[,<port>,...]]

[-mfunc <name>]

[-use_instance_obj]

[-argument]

Description

The matlabcp command has the following characteristics:

• Starts the HDL simulator client component of the HDL Verifier software.
• Associates a specified instance of an HDL design created in the HDL simulator with a

MATLAB function.
• Creates a process that schedules invocations of the specified MATLAB function.
• Cancels any pending events scheduled by a previous matlabcp command that

specified the same instance. For example, if you issue the command matlabcp for
instance foo, all previously scheduled events initiated by matlabcp on foo are
canceled.

This command is issued in the HDL simulator.

MATLAB component functions simulate the behavior of modules in the HDL model. A
stub module (providing port definitions only) in the HDL model passes its input signals
to the MATLAB component function. The MATLAB component processes this data and
returns the results to the outputs of the stub module. A MATLAB component typically
provides some functionality (such as a filter) that is not yet implemented in the HDL
code. See “MATLAB Function as a Component”.

 matlabcp

3-25

Notes The communication mode that you specify for matlabcp must match the
communication mode you specified for hdldaemon when you established the server
connection.

For socket communications, specify the port number you selected for hdldaemon when
you issue a link request with the matlabcp command in the HDL simulator.

Arguments

<instance>

Specifies an instance of an HDL design that is associated with a MATLAB function.
By default, matlabcp associates the instance to a MATLAB function that has
the same name as the instance. For example, if the instance is myfirfilter,
matlabcp associates the instance with the MATLAB function myfirfilter
(note that hierarchy names are ignored; for example, if your instance name is
top.myfirfilter, matlabcp would associate only myfirfilter with the
MATLAB function). Alternatively, you can specify a different MATLAB function with
-mfunc.

Note: Do not specify an instance of an HDL module that has already been associated
with a MATLAB function (via matlabcp or matlabtb). If you do, the new
association overwrites the existing one.

<time-specs>

Specifies a combination of time specifications consisting of any or all of the following:

<timen>,... Specifies one or more discrete time values at which the HDL
simulator calls the specified MATLAB function. Each time value
is relative to the current simulation time. Even if you do not
specify a time, the HDL simulator calls the MATLAB function
once at the start of the simulation. Separate multiple time values
by a space.

For example:
matlabtb vlogtestbench_top 10 ns, 10 ms, 10 sec

3 Functions — Alphabetical List

3-26

The MATLAB function executes when time equals 0 and then 10
nanoseconds, 10 milliseconds, and 10 seconds from time zero.

Note: For time-based parameters, you can specify any standard
time units (ns, us, and so on). If you do not specify units, the
command treats the time value as a value of HDL simulation
ticks.

-repeat <time> Specifies that the HDL simulator calls the MATLAB function
repeatedly based on the specified <timen>,... pattern. The
time values are relative to the value of tnow at the time the HDL
simulator first calls the MATLAB function.

-cancel <time> Specifies a time at which the specified MATLAB function stops
executing. The time value is relative to the value of tnow at the
time the HDL simulator first calls the MATLAB function. If you
do not specify a cancel time, the application calls the MATLAB
function until you finish the simulation, quit the session, or issue
a nomatlabtb call.

Note: The -cancel option works only with the <time-specs>
arguments. It does not affect any of the other scheduling
arguments for matlabcp.

Note: Place time specifications after the matlabcp instance and before any
additional command arguments; otherwise the time specifications are ignored.

All time specifications for the matlabcp functions appear as a number and, optionally,
a time unit:

• fs (femtoseconds)
• ps (picoseconds)
• ns (nanoseconds)
• us (microseconds)
• ms (milliseconds)
• sec (seconds)

 matlabcp

3-27

• no units (tick)

-socket <tcp_spec>

Specifies that HDL Verifier use TCP/IP sockets to communicate between the HDL
simulator and MATLAB. Shared memory is the default mode of communication
and takes effect if you do not specify -socket <tcp_spec> on the command line. The
communication mode that you specify with the matlabcp command must match the
communication mode that you issued with the hdldaemon command.

-rising <signal>[, <signal>...]

Indicates that the application calls the specified MATLAB function on the rising edge
(transition from '0' to '1') of any of the specified signals. Specify -rising with the
path names of one or more signals defined as a logic type (STD_LOGIC, BIT, X01, and
so on).

For determining signal transition in:

• VHDL: Rising edge is {0 or L} to {1 or H}.
• Verilog: Rising edge is the transition from 0 to x, z, or 1, and from x or z to 1.

Note: When specifying signals with the -rising, -falling, and -sensitivity options,
specify them in full path name format. If you do not specify a full path name, the
command applies the HDL simulator rules to resolve signal specifications.

-falling <signal>[, <signal>...]

Indicates that the application calls the specified MATLAB function whenever
any of the specified signals experiences a falling edge—changes from '1' to '0'.
Specify -falling with the path names of one or more signals defined as a logic type
(STD_LOGIC, BIT, X01, and so on).

For determining signal transition in:

• VHDL: Falling edge is {1 or H} to {0 or L}.
• Verilog: Falling edge is the transition from 1 to x, z, or 0, and from x or z to 0.

Note: When specifying signals with the -rising, -falling, and -sensitivity options,
specify them in full path name format. If you do not specify a full path name, the
command applies the HDL simulator rules to resolve signal specifications.

3 Functions — Alphabetical List

3-28

-sensitivity <signal>[, <signal>...]

Indicates that the application calls the specified MATLAB function whenever any
of the specified signals changes state. Specify -sensitivity with the path names of
one or more signals. Signals of any type can appear in the sensitivity list and can be
positioned at any level in the HDL model hierarchy.

Note: When specifying signals with the -rising, -falling, and -sensitivity options,
specify them in full path name format. If you do not specify a full path name, the
command applies the HDL simulator rules to resolve signal specifications.

-mfunc <name>

The name of the MATLAB function that is associated with the HDL module instance
you specify for instance. By default, the HDL Verifier software invokes a MATLAB
function that has the same name as the specified HDL instance. Thus, if the names
are the same, you can omit the -mfunc option. If the names are not the same, use this
argument when you call matlabcp. If you omit this argument and matlabcp does
not find a MATLAB function with the same name, the command generates an error
message.

-use_instance_obj

Instructs the function specified with the argument -mfunc to use an HDL instance
object passed by HDL Verifier to the function. This argument has the fields shown
in the following table. See “Writing Functions Using the HDL Instance Object” for
examples.

Field Read/
Write Access

Description

tnext Write only Used to schedule a callback during the set time value. This field
is equivalent to old tnext. For example:
hdl_instance_obj.tnext = hdl_instance_obj.tnow + 5e-9

will schedule a callback at time equals 5 nanoseconds from tnow.
userdata Read/Write Stores state variables of the current matlabcp instance. You

can retrieve the variables the next time the callback of this
instance is scheduled.

simstatus Read only Stores the status of the HDL simulator. The HDL Verifier
software sets this field to 'Init' during the first callback for this

 matlabcp

3-29

Field Read/
Write Access

Description

particular instance and to 'Running' thereafter. simstatus is a
read-only property.

>> hdl_instance_obj.simstatus

ans=

 Init

instance Read only Stores the full path of the Verilog/VHDL instance associated
with the callback. instance is a read-only property. The value of
this field equals that of the module instance specified with the
function call. For example:

In the HDL simulator:
hdlsim> matlabcp osc_top -mfunc oscfilter use_instance_obj

In MATLAB:

>> hdl_instance_obj.instance

ans=

 osc_top

argument Read only Stores the argument set by the -argument option of matlabcp.
For example:
matlabtb osc_top -mfunc oscfilter -use_instance_obj -argument foo

The link software supports the -argument option only when it is
used with -use_instance_obj, otherwise the argument is ignored.
argument is a read-only property.

>> hdl_instance_obj.argument

ans=

 foo

3 Functions — Alphabetical List

3-30

Field Read/
Write Access

Description

portinfo Read only Stores information about the VHDL and Verilog ports associated
with this instance. portinfo is a read-only property, which has a
field structure that describes the ports defined for the associated
HDL module. For each port, the portinfo structure passes
information such as the port’s type, direction, and size. For more
information on port data, see “Gaining Access to and Applying
Port Information”.
hdl_instance_obj.portinfo.field1.field2.field3

Note: When you use use_instance_obj, you access tscale through
the HDL instance object. If you do not use use_instance_obj, you
can still access tscale through portinfo.

tscale Read only Stores the resolution limit (tick) in seconds of the HDL
simulator. tscale is a read-only property.

>> hdl_instance_obj.tscale

ans=

 1.0000e-009

Note: When you use use_instance_obj, you access tscale through
the HDL instance object. If you do not use use_instance_obj, you
can still access tscale through portinfo.

tnow Read only Stores the current time. tnow is a read-only property.
hdl_instance_obj.tnext = hld_instance_obj.tnow + fastestrate;

 matlabcp

3-31

Field Read/
Write Access

Description

portvalues Read/Write Stores the current values of and sets new values for the output
and input ports for a matlabcp instance. For example:

>> hdl_instance_obj.portvalues

ans =

Read Only Input ports:

 clk_enable: []

 clk: []

 reset: []

Read/Write Output ports:

 sine_out: [22x1 char]

linkmode Read only Stores the status of the callback. The HDL Verifier software
sets this field to 'testbench' if the callback is associated with
matlabtb and 'component' if the callback is associated with
matlabcp. linkmode is a read-only property.

>> hdl_instance_obj.linkmode

ans=

 component

-argument

Used to pass user-defined arguments from the matlabcp invocation on the HDL side
to the MATLAB function callbacks. Supported with -use_instance_obj only. See the
field listing under the -use_instance_obj property.

Examples

The following examples demonstrate some ways you might use the matlabcp function.

Using matlabcp with the -mfunc option to Associate an HDL Component
with a MATLAB Function of a Different Name

This example explicitly associates the Verilog module
vlogtestbench_top.u_matlab_component with the MATLAB function vlogmatlabc using

3 Functions — Alphabetical List

3-32

the -mfunc option. The '-socket' option specifies using socket communication on port
4449.
hdlsim>matlabcp vlogtestbench_top.u_matlab_component -mfunc vlogmatlabc -socket 4449

Using matlabcp with Explicit Times and the -cancel Option

This example includes explicit times with the -cancel option.
hdlsim>matlabcp vlogtestbench_top 1e6 fs 3 2e3 ps -repeat 3 ns -cancel 7ns

Using matlabcp with Rising and Falling Edges

This example implicitly associates the Verilog module, vlogtestbench_top, with the
MATLAB function vlogtestbench_top, and also uses rising and falling edges.
hldsim> matlabcp vlogtestbench_top 1 2 3 4 5 6 7 -rising outclk3

 -falling u_matlab_component/inoutclk

 matlabtb

3-33

matlabtb
Schedule MATLAB test bench session for instantiated HDL module

Syntax
matlabtb <instance>

[<time-specs>]

[-socket <tcp-spec>]

[-rising <port>[,<port>...]]

[-falling <port> [,<port>,...]]

[-sensitivity <port>[,<port>,...]]

[-mfunc <name>]

[-use_instance_obj]

[-argument]

Description

The matlabtb command has the following characteristics:

• Starts the HDL simulator client component of the HDL Verifier software.
• Associates a specified instance of an HDL design created in the HDL simulator with a

MATLAB function.
• Creates a process that schedules invocations of the specified MATLAB function.
• Cancels any pending events scheduled by a previous matlabtb command that

specified the same instance. For example, if you issue the command matlabtb for
instance foo, all previously scheduled events initiated by matlabtb on foo are
canceled.

This command is issued in the HDL simulator.

MATLAB test bench functions mimic stimuli passed to entities in the HDL model. You
force stimulus from MATLAB or HDL scheduled with matlabtb.

Notes The communication mode that you specify for matlabtb must match the
communication mode you specified for hdldaemon when you established the server
connection.

3 Functions — Alphabetical List

3-34

For socket communications, specify the port number you selected for hdldaemon when
you issue a link request with the matlabtb command in the HDL simulator.

Arguments

<instance>

Specifies the instance of an HDL module that the HDL Verifier software associates
with a MATLAB test bench function. By default, matlabtb associates the instance
with a MATLAB function that has the same name as the instance. For example, if
the instance is myfirfilter, matlabtb associates the instance with the MATLAB
function myfirfilter (note that hierarchy names are ignored; for example, if your
instance name is top.myfirfilter, matlabtb would associate only myfirfilter
with the MATLAB function). Alternatively, you can specify a different MATLAB
function with -mfunc.

Note: Do not specify an instance of an HDL module that has already been associated
with a MATLAB function (via matlabcp or matlabtb). If you do, the new
association overwrites the existing one.

<time-specs>

Specifies a combination of time specifications consisting of any or all of the following:

<timen>,... Specifies one or more discrete time values at which the HDL
simulator calls the specified MATLAB function. Each time value
is relative to the current simulation time. Even if you do not
specify a time, the HDL simulator calls the MATLAB function
once at the start of the simulation. Separate multiple time values
by a space.

For example:
matlabtb vlogtestbench_top 10 ns, 10 ms, 10 sec

The MATLAB function executes when time equals 0 and then 10
nanoseconds, 10 milliseconds, and 10 seconds from time zero.

 matlabtb

3-35

Note: For time-based parameters, you can specify any standard
time units (ns, us, and so on). If you do not specify units, the
command treats the time value as a value of HDL simulation
ticks.

-repeat <time> Specifies that the HDL simulator calls the MATLAB function
repeatedly based on the specified <timen>,... pattern. The
time values are relative to the value of tnow at the time the HDL
simulator first calls the MATLAB function.

For example:
matlabtb vlogtestbench_top 5 ns -repeat 10 ns

The MATLAB function executes at time equals 0 ns, 5 ns, 15 ns,
25 ns, and so on.

-cancel <time> Specifies a time at which the specified MATLAB function stops
executing. The time value is relative to the value of tnow at the
time the HDL simulator first calls the MATLAB function. If you
do not specify a cancel time, the application calls the MATLAB
function until you finish the simulation, quit the session, or issue
a nomatlabtb call.

Note: The -cancel option works only with the <time-specs>
arguments. It does not affect any of the other scheduling
arguments for matlabtb.

Note: Place time specifications after the matlabtb instance and before any
additional command arguments; otherwise the time specifications are ignored.

All time specifications for the matlabtb functions appear as a number and, optionally,
a time unit:

• fs (femtoseconds)
• ps (picoseconds)
• ns (nanoseconds)
• us (microseconds)

3 Functions — Alphabetical List

3-36

• ms (milliseconds)
• sec (seconds)
• no units (tick)

-socket <tcp_spec>

Specifies TCP/IP socket communication for the link between the HDL simulator
and MATLAB. When you provide TCP/IP information for matlabtb, you can choose
a TCP/IP port number or TCP/IP port alias or service name for the <tcp_spec>
parameter. If you are setting up communication between computers, you must also
specify the name or Internet address of the remote host that is running the MATLAB
server (hdldaemon).

For more information on choosing TCP/IP socket ports, see “TCP/IP Socket Ports ”.

If you run the HDL simulator and MATLAB on the same computer, you have the
option of using shared memory for communication. Shared memory is the default
mode of communication and takes effect if you do not specify-socket <tcp_spec>
on the command line.

Note: The communication mode that you specify with the matlabtb command must
match what you specify for the communication mode when you issue the hdldaemon
command in MATLAB. For more information on modes of communication, see
“Communications for HDL Cosimulation”. For more information on establishing the
MATLAB end of the communication link, see “Starting the HDL Simulator from
MATLAB”.

-rising <signal>[, <signal>...]

Indicates that the application calls the specified MATLAB function on the rising edge
(transition from '0' to '1') of any of the specified signals. Specify -rising with the
path names of one or more signals defined as a logic type (STD_LOGIC, BIT, X01, and
so on).

For determining signal transition in:

• VHDL: Rising edge is {0 or L} to {1 or H}.
• Verilog: Rising edge is the transition from 0 to x, z, or 1, and from x or z to 1.

 matlabtb

3-37

Note: When specifying signals with the -rising, -falling, and -sensitivity
options, specify them in full path name format. If you do not specify a full path name,
the command applies the HDL simulator rules to resolve signal specifications.

-falling <signal>[, <signal>...]

Indicates that the application calls the specified MATLAB function whenever
any of the specified signals experiences a falling edge—changes from '1' to '0'.
Specify -falling with the path names of one or more signals defined as a logic type
(STD_LOGIC, BIT, X01, and so on).

For determining signal transition in:

• VHDL: Falling edge is {1 or H} to {0 or L}.
• Verilog: Falling edge is the transition from 1 to x, z, or 0, and from x or z to 0.

Note: When specifying signals with the -rising, -falling, and -sensitivity
options, specify them in full path name format. If you do not specify a full path name,
the command applies the HDL simulator rules to resolve signal specifications.

-sensitivity <signal>[, <signal>...]

Indicates that the application calls the specified MATLAB function whenever any of
the specified signals changes state. Specify -sensitivity with the path names of
one or more signals. Signals of any type can appear in the sensitivity list and can be
positioned at any level of the HDL design.

If you specify the option with no signals, the interface is sensitive to value changes
for all signals.

Note: Use of this option for INOUT ports can result in double calls.

For example:

-sensitivity /randnumgen/dout

The MATLAB function executes if the value of dout changes.

3 Functions — Alphabetical List

3-38

Note: When specifying signals with the -rising, -falling, and -sensitivity
options, specify them in full path name format. If you do not specify a full path name,
the command applies the HDL simulator rules to resolve signal specifications.

-mfunc <name>

The name of the associated MATLAB function. If you omit this argument, matlabtb
associates the HDL module instance to a MATLAB function that has the same
name as the HDL instance. If you omit this argument and matlabtb does not find a
MATLAB function with the same name, the command generates an error message.

-use_instance_obj

Instructs the function specified with the argument -mfunc to use an HDL instance
object passed by HDL Verifier to the function. This argument has the fields shown
in the following table. See“Writing Functions Using the HDL Instance Object” for
examples.

Field Read/
Write Access

Description

tnext Write only Used to schedule a callback during the set time value. This field
is equivalent to old tnext. For example:
hdl_instance_obj.tnext = hdl_instance_obj.tnow + 5e-9

will schedule a callback at time equals 5 nanoseconds from tnow.
userdata Read/Write Stores state variables of the current matlabcp instance. You

can retrieve the variables the next time the callback of this
instance is scheduled.

simstatus Read only Stores the status of the HDL simulator. The HDL Verifier
software sets this field to 'Init' during the first callback for this
particular instance and to 'Running' thereafter. simstatus is a
read-only property.

>> hdl_instance_obj.simstatus

ans=

 Init

instance Read only Stores the full path of the Verilog/VHDL instance associated
with the callback. instance is a read-only property. The value of
this field equals that of the module instance specified with the
function call. For example:

 matlabtb

3-39

Field Read/
Write Access

Description

In the HDL simulator:
hdlsim> matlabcp osc_top -mfunc oscfilter use_instance_obj

In MATLAB:

>> hdl_instance_obj.instance

ans=

 osc_top

argument Read only Stores the argument set by the -argument option of matlabcp.
For example:
matlabtb osc_top -mfunc oscfilter -use_instance_obj -argument foo

The link software supports the -argument option only when it is
used with -use_instance_obj, otherwise the argument is ignored.
argument is a read-only property.

>> hdl_instance_obj.argument

ans=

 foo

portinfo Read only Stores information about the VHDL and Verilog ports associated
with this instance. portinfo is a read-only property, which has a
field structure that describes the ports defined for the associated
HDL module. For each port, the portinfo structure passes
information such as the port’s type, direction, and size. For more
information on port data, see “Gaining Access to and Applying
Port Information”.
hdl_instance_obj.portinfo.field1.field2.field3

Note: When you use use_instance_obj, you access tscale through
the HDL instance object. If you do not use use_instance_obj, you
can still access tscale through portinfo.

3 Functions — Alphabetical List

3-40

Field Read/
Write Access

Description

tscale Read only Stores the resolution limit (tick) in seconds of the HDL
simulator. tscale is a read-only property.

>> hdl_instance_obj.tscale

ans=

 1.0000e-009

Note: When you use use_instance_obj, you access tscale through
the HDL instance object. If you do not use use_instance_obj, you
can still access tscale through portinfo.

tnow Read only Stores the current time. tnow is a read-only property.
hdl_instance_obj.tnext = hld_instance_obj.tnow + fastestrate;

portvalues Read/Write Stores the current values of and sets new values for the output
and input ports for a matlabcp instance. For example:

>> hdl_instance_obj.portvalues

ans =

Read Only Input ports:

 clk_enable: []

 clk: []

 reset: []

Read/Write Output ports:

 sine_out: [22x1 char]

linkmode Read only Stores the status of the callback. The HDL Verifier software
sets this field to 'testbench' if the callback is associated with
matlabtb and 'component' if the callback is associated with
matlabcp. linkmode is a read-only property.

>> hdl_instance_obj.linkmode

ans=

 component

-argument

 matlabtb

3-41

Used to pass user-defined arguments from the matlabtb instantiation on the HDL
side to the MATLAB function callbacks. Supported with -use_instance_obj only.
See the field listing for argument under the -use_instance_obj property.

Examples

The following examples demonstrate some ways you might use the matlabtb function.

Using matlabtb with the -socket Argument and Time Parameters

The following command starts the HDL simulator client component of HDL Verifier,
associates an instance of the entity, myfirfilter, with the MATLAB function
myfirfilter, and begins a local TCP/IP socket-based test bench session using TCP/
IP port 4449. Based on the specified test bench stimuli, myfirfilter.m executes 5
nanoseconds from the current time, and then repeatedly every 10 nanoseconds:
hdlsim> matlabtb myfirfilter 5 ns -repeat 10 ns -socket 4449

Applying Rising Edge Clocks and State Changes with matlabtb

The following command starts the HDL simulator client component of HDL Verifier,
and begins a remote TCP/IP socket-based session using remote MATLAB host computer
named computer123 and TCP/IP port 4449. Based on the specified test bench stimuli,
myfirfilter.m executes 10 nanoseconds from the current time, each time the signal /
top/fclk experiences a rising edge, and each time the signal /top/din changes state.
hdlsim> matlabtb /top/myfirfilter 10 ns -rising /top/fclk -sensitivity /top/din

 -socket 4449@computer123

Specifying a MATLAB Function Name and Sensitizing Signals with
matlabtb

The following command starts the HDL simulator client component of the HDL Verifier
software. The '-mfunc' option specifies the MATLAB function to connect to and the '-
socket' option specifies the port number for socket connection mode. '-sensitivity'
indicates that the test bench session is sensitized to the signal sine_out.

hdlsim> matlabtb osc_top -sensitivity /osc_top/sine_out

 -socket 4448 -mfunc hosctb

3 Functions — Alphabetical List

3-42

matlabtbeval
Call specified MATLAB function once and immediately on behalf of instantiated HDL
module

Syntax
matlabtbeval <instance> [-socket <tcp_spec>]

[-mfunc <name>]

Description

The matlabtbeval command has the following characteristics:

• Starts the HDL simulator client component of the HDL Verifier software.
• Associates a specified instance of an HDL design created in the HDL simulator with a

MATLAB function.
• Executes the specified MATLAB function once and immediately on behalf of the

specified module instance.

This command is issued in the HDL simulator.

Note: The matlabtbeval command executes the MATLAB function immediately, while
matlabtb provides several options for scheduling MATLAB function execution.

Notes The communication mode that you specify for matlabtbeval must match the
communication mode you specified for hdldaemon when you established the server
connection.

For socket communications, specify the port number you selected for hdldaemon when
you issue a link request with the matlabtbeval command in the HDL simulator.

Arguments
<instance>

 matlabtbeval

3-43

Specifies the instance of an HDL module that is associated with a MATLAB function.
By default, matlabtbeval associates the HDL module instance with a MATLAB
function that has the same name as the HDL module instance. For example, if the
HDL module instance is myfirfilter, matlabtbeval associates the HDL module
instance with the MATLAB function myfirfilter. Alternatively, you can specify a
different MATLAB function with the -mfunc property.

-socket <tcp_spec>

Specifies TCP/IP socket communication for the link between the HDL simulator and
MATLAB. For TCP/IP socket communication on a single computer, the <tcp_spec>
can consist of just a TCP/IP port number or service name (alias). If you are setting
up communication between computers, you must also specify the name or Internet
address of the remote host.

For more information on choosing TCP/IP socket ports, see “TCP/IP Socket Ports ”.

If you run the HDL simulator and MATLAB on the same computer, you have the
option of using shared memory for communication. Shared memory is the default
mode of communication and takes effect if you do not specify -socket <tcp-spec>
on the command line.

Note: The communication mode that you specify with the matlabtbeval command
must match what you specify for the communication mode when you call the
hdldaemon command to start the MATLAB server. For more information on
communication modes, see “Communications for HDL Cosimulation”. For more
information on establishing the MATLAB end of the communication link, see
“Starting the HDL Simulator from MATLAB”.

-mfunc <name>

The name of the associated MATLAB function. If you omit this argument,
matlabtbeval associates the HDL module instance with a MATLAB function that
has the same name as the HDL module instance.. If you omit this argument and
matlabtbeval does not find a MATLAB function with the same name, the command
displays an error message.

3 Functions — Alphabetical List

3-44

Examples

This example starts the HDL simulator client component of the link software, associates
an instance of the module myfirfilter with the function myfirfilter.m, and uses a local
TCP/IP socket-based communication link to TCP/IP port 4449 to execute the function
myfirfilter.m:

 hdlsim> matlabtbeval myfirfilter -socket 4449:

 mvl2dec

3-45

mvl2dec
Convert multivalued logic to decimal

Syntax

mvl2dec('mv_logic_string')

mvl2dec('mv_logic_string', signed)

Description

mvl2dec('mv_logic_string') converts a multivalued logic string to a positive
decimal. If mv_logic_string contains any character other than '0' or '1', NaN is
returned. mv_logic_string must be a vector.

mvl2dec('mv_logic_string', signed) converts a multivalued logic string to a
positive or a negative decimal. If signed is true, this function assumes the first character
mv_logic_string(1) to be a signed bit of a 2s complement number. If signed is missing or
false, the multivalued logic string becomes a positive decimal.

Examples

The following function call returns the decimal value 23:

>>mvl2dec('010111')

The following function call returns NaN:

>>mvl2dec('xxxxxx')

The following function call returns the decimal value -9:

>>mvl2dec('10111',true)

See Also
dec2mvl

3 Functions — Alphabetical List

3-46

nclaunch
Start and configure Cadence Incisive simulators for use with HDL Verifier software

Syntax

nclaunch('PropertyName', 'PropertyValue'...)

Description

nclaunch('PropertyName', 'PropertyValue'...) starts the Cadence Incisive
simulator for use with the MATLAB and Simulink features of the HDL Verifier software.
The first folder in the Cadence Incisive simulator matches your MATLAB current folder
if you do not specify an explicit rundir parameter.

After you call this function, you can use HDL Verifier functions for the HDL simulator
(for example, hdlsimmatlab, hdlsimulink) to do interactive debug setup.

The property name/property value pair settings allow you to customize the Tcl commands
used to start the Cadence Incisive simulator, the ncsim executable to be used, the path
and name of the Tcl script that stores the start commands, and for Simulink applications,
details about the mode of communication to be used by the applications. You must use a
property name/property value pair with nclaunch.

Name-Value Pair Arguments

'hdlsimdir'

Specifies the path name to the Cadence Incisive simulator executable to be started.

• pathname

Start a different version of the Cadence Incisive simulator or if the version of the
simulator you want to run does not reside on the system path.

Default: The first version of the simulator that the function finds on the system path.

 nclaunch

3-47

'hdlsimexe'

Specifies the name of a Cadence Incisive simulator executable.

• simexename

Custom-built simulator executable.

Default: ncsim

'libdir'

This property creates an entry in the startup Tcl file that points to the folder with the
shared libraries for the Cadence Incisive simulator to communicate with MATLAB when
the Cadence Incisive simulator runs on a machine that does not have MATLAB.

• folder

Folder containing MATLAB shared libraries.

'libfile'

Specifies the library file to use for HDL simulation. If the HDL simulator links other
libraries, including SystemC libraries, that were built using a compiler supplied with the
HDL simulator, you can specify an alternate library file with this property. See “HDL
Verifier Libraries” for versions of the library built using other compilers.

• library_file_name

The particular library file to use for HDL simulation.

Default: The version of the library file that was built using the same compiler that
MATLAB itself uses.

'rundir'

Specifies the folder containing the HDL simulator executable.

• dirname

Where to run the HDL simulator.

The following conditions apply to this name/value pair:

3 Functions — Alphabetical List

3-48

• If the value of dirname is “TEMPDIR”, the function creates a temporary folder in
which it runs the HDL simulator.

• If you specifydirnameand the folder does not exist, you will get an error.

Default: The current working folder

'runmode'

Specifies how to start the HDL simulator.

• mode

This property accepts the following valid values:

• 'Batch': Start the HDL simulator in the background with no window.
• 'Batch with Xterm': Run HDL simulator in an non-interactive Xterm window.
• 'CLI': Start the HDL simulator in an interactive terminal window.
• 'GUI': Start the HDL simulator with the SimVision graphical user interface.

Default: 'GUI'

'socketsimulink'

Specifies TCP/IP socket communication between the Cadence Incisive simulator and
Simulink. For shared memory, omit -socket <tcp-spec> on the command line.

• tcp_spec

TCP/IP port number or service name (alias)

Default: Shared memory

'starthdlsim'

Determines whether the Cadence Incisive simulator is launched.

This function creates a startup Tcl file which contains pointers to MATLAB and Simulink
shared libraries. To run the Cadence Incisive simulator manually, see “Starting the HDL
Simulator from MATLAB”.

• yes

Launches the Cadence Incisive simulator and creates a startup Tcl file.

 nclaunch

3-49

• no

Does not launch the Cadence Incisive simulator , but still creates a startup Tcl file.

Default: yes

'startupfile'

Specify the name and location of the Tcl script generated by nclaunch. The generated
Tcl script, when executed, compiles and launches the HDL simulator. You can edit and
use the generated file in a regular shell outside of MATLAB. For example:

sh> tclsh compile_and_launch.tcl

• pathname

Filename and path for generated Tcl script. If the file name already exists on the
specified path, that file's contents are overwritten.

Default: Generates a filename of compile_and_launch.tcl in the folder specified by
rundir.

'tclstart'

Specifies one or more Tcl commands to execute before the Cadence Incisive simulator
launches. You must specify at least one command; otherwise, no action occurs.

• tcl_commands

A command string or a cell array of command strings.

Note: You must type exec in front of non-Tcl system shell commands. For example:

exec -ncverilog -c +access+rw +linedebug top.v

hdlsimulink -gui work.top

Examples

Start Cosimulation Session with Simulink

Compile design and start Simulink.

3 Functions — Alphabetical List

3-50

nclaunch('tclstart',{'exec ncverilog -c +access+rw +linedebug top.v','hdlsimulink...

 -gui work.top'},'socketsimulink','4449','rundir', '/proj');

In this example, nclaunch performs the following:

• Compiles the design top.v: exec ncverilog -c +access+rw +linedebug top.v.
• Starts Simulink with the GUI from the proj folder with the model loaded:

hdlsimulink -gui work.top and 'rundir', '/proj'.
• Instructs Simulink to communicate with the HDL Verifier interface on socket port

4449: ‘socketsimulink','4449'.

All of these commands are specified in a single string as the property value to tclstart.

Create Tcl Script to Start HDL Simulator

Create a Tcl script to start the HDL simulator from a Tcl shell using nclaunch.

Specify the name of the Tcl script and the command(s) it includes as parameters to
nclaunch:
nclaunch (‘tclstart’, ‘xxx’, ‘startupfile’, ‘mytclscript’, ‘starthdlsim’, ‘yes’)

In this example, a Tcl script is created and the command to start the HDL simulator is
included. The startup Tcl file is named "mytclscript".

Execute the script in a Tcl shell:

shell> tclsh mytclscript

This starts the HDL simulator.

Execute Multiple Tcl Commands When Launching Cosimulation Connection

Build a sequence of Tcl commands that are then executed in a Tcl shell, after calling
nclaunch from MATLAB.

Assign Tcl command values to the tclcmd parameter of nclaunch:
tclcmd{1} = 'exec ncvlog vlogtestbench_top.v'

tclcmd{2} = 'exec ncelab -access +wc vlogtestbench_top'

tclcmd{3} = ['hdlsimmatlab -gui vlogtestbench_top ' '-input "{@matlabcp...

 vlogtestbench_top.u_matlab_component -mfunc vlogmatlabc...

 -socket 32864}" ' '-input "{@run 50}"']

tclcmd =

 'exec ncvlog vlogtestbench_top.v' 'exec ncelab -access +wc vlogtestbench_top'

 nclaunch

3-51

tclcmd =

 'exec ncvlog vlogtestbench_top.v' 'exec ncelab -access +wc vlogtestbench_top'

tclcmd =

 [1x31 char] [1x41 char] [1x145 char]

• tclcmd{1} compiles vlogtestbench_top.
• tclcmd{2} elaborates the model.
• tclcmd{3} calls hdlsimmatlab in gui mode and loads the elaborated

vlogtestbench_top in the simulator.

Issue the nclaunch command, passing the tclcmd variable just set:
nclaunch('hdlsimdir', 'local.IUS.glnx.tools.bin', 'tclstart',tclcmd);

In this example, the nclaunch launches the following tasks through the Tcl commands
assigned in tclcmd:

• Executes the arguments being passed with -input (matlabtb and run) in the ncsim
Tcl shell.

• Issues a call to matlabcp, which associates the function vlogmatlabc to the module
instance u_matlab_component.

• Assumes that the hdldaemon in MATLAB is listening on port 32864
• Instructs the run function to run 50 resolution units (ticks).

3 Functions — Alphabetical List

3-52

nomatlabtb
End active MATLAB test bench and MATLAB component sessions

Syntax
nomatlabtb

Description

The nomatlabtb command ends all active MATLAB test bench and MATLAB
component sessions that were previously initiated by matlabtb or matlabcp commands.

This command is issued in the HDL simulator.

Note: This command should be called before shutting down hdldaemon or hdldaemon
will block shutdown until the call occurs.

Examples

The following command ends all MATLAB test bench and MATLAB component sessions:

hdlsim> nomatlabtb

See Also
matlabtb | matlabcp

 notifyMatlabServer

3-53

notifyMatlabServer
Send HDL simulator event and process IDs to MATLAB server

Syntax

notifyMatlabServer EventID -socket tcp-spec

Description

notifyMatlabServer EventID -socket tcp-spec sends the HDL simulator
event ID and process identification (PID) to the MATLAB server (hdldaemon)
using the specified connection methods (socket or shared memory). For MATLAB
to receive this message, hdldaemon must be running with the same communication
mode as specified with the notifyMatlabServer command. The event ID and the
PID queue in hdldaemon. notifyMatlabServer is often used in conjunction with
waitForHdlClient to make sure the HDL simulator is ready to begin or continue
processing.

This command issues in the HDL simulator.

Input Arguments

EventID

Specifies the event ID to be sent to hdldaemon. The ID requires a positive number less
than the maximum value of 32-bit signed integer. This parameter contains the event ID
expected by the command waitForHdlClient in MATLAB.

Default: 1

socket tcp_spec

Specifies that TCP/IP socket communication be used for the link between the HDL
simulator and MATLAB. For TCP/IP socket communication on a single computer,
tcp_spec requires either a TCP/IP port number or service name (alias). To set up

3 Functions — Alphabetical List

3-54

communication between computers, you must also specify the name or Internet address
of the remote host that is running the MATLAB server (hdldaemon).

When you omit the socket option, MATLAB and the HDL simulator use shared memory
communication.

Examples

In MATLAB, use the function waitForHdlClient to verify whether the HDL simulator
event ID has been received. In the following example, the function returns the HDL
Simulator PID if EventID = 5 is received within 100 seconds. If a time-out occurs, the
function returns –1.

>> hdldaemon('socket',5002);

...

>> hdlpid = waitForHdlClient(100,5);

In the HDL simulator, issue the notifyMatlabServer command to send event ID 5 to
hdldaemon running on the same machine using TCP/IP socket port 5002.

>> notifyMatlabServer 5 -socket 5002

See Also
waitForHdlClient

 pingHdlSim

3-55

pingHdlSim
Block cosimulation until HDL simulator is ready for simulation

Syntax

pingHdlSim(timeout)

pingHdlSim(timeout, 'portnumber')

pingHdlSim(timeout, 'portnumber', 'hostname')

Description

pingHdlSim(timeout) blocks cosimulation by not returning until the HDL server loads
or until the specified time-out occurs. pingHdlSim returns the process ID of the HDL
simulator or -1 if a time-out occurs. You must enter a time-out value. You may find this
function useful if you are trying to automate a cosimulation and need to know that the
HDL server has loaded before your script continues the simulation.

pingHdlSim(timeout, 'portnumber') tries to connect to the local host on port
portnumber and times out after timeout seconds you specify.

pingHdlSim(timeout, 'portnumber', 'hostname') tries to connect to the host
hostname on port portname. It times out after timeout seconds you specify.

Examples

The following function call blocks further cosimulation until the HDL server loads or
until 30 seconds have passed:

>>pingHdlSim(30)

If the server loads within 30 seconds, pingHdlSim returns the process ID. If it does not,
pingHdlSim returns -1.

The following function call blocks further cosimulation on port 5678 until the HDL server
loads or until 20 seconds have passed:

3 Functions — Alphabetical List

3-56

>>pingHdlSim(20, '5678')

The following function call blocks further cosimulation on port 5678 on host name
msuser until the HDL server loads or until 20 seconds pass:

>>pingHdlSim(20, '5678', 'msuser')

 tclHdlSim

3-57

tclHdlSim
Execute Tcl command in Incisive or ModelSim simulator

Syntax

tclHdlSim(tclCmd)

tclHdlSim(tclCmd,'portNumber')

tclHdlSim(tclCmd, 'portnumber', 'hostname')

Description

tclHdlSim(tclCmd) executes a Tcl command on the Incisive or ModelSim simulator
using a shared connection during a Simulink cosimulation session.

tclHdlSim(tclCmd,'portNumber') executes a Tcl command on the Incisive or
ModelSim simulator by connecting to the local host on port portNumber.

tclHdlSim(tclCmd, 'portnumber', 'hostname') executes a Tcl command on the
Incisive or ModelSim simulator by connecting to the host hostname on port portname.

The Incisive or ModelSim simulator must be connected to MATLAB and Simulink
using the HDL Verifier software for this function to work (see either vsimulink or
hdlsimulink).

You may specify any valid Tcl command string. The Tcl command string you specify
cannot include commands that load an HDL simulator project or modify simulator state.
For example, the string cannot include commands such as start, stop, or restart (for
ModelSim) or run, stop, or reset (for Incisive).

To execute a Tcl command on the Incisive or ModelSim simulator during a MATLAB
cosimulation session, use hdldaemon('tclcmd','command').

Examples

The following function call displays a message in the HDL simulator command window
using port 5678 on host name msuser:

3 Functions — Alphabetical List

3-58

>>tclHdlSim('puts "Done"', '5678', 'msuser')

See Also
hdldaemon | nclaunch | vsim

 vsim

3-59

vsim
Start and configure ModelSim for use with HDL Verifier

Syntax
vsim('PropertyName', 'PropertyValue'...)

Description
vsim('PropertyName', 'PropertyValue'...) starts and configures the ModelSim
simulator (vsim) for use with the MATLAB and Simulink features of HDL Verifier. The
first folder in ModelSim matches your MATLAB current folder.

vsim creates a startup (or .do) file that adds the following Tcl commands to ModelSim:

• vsimmatlab: link to MATLAB from ModelSim
• vsimulink: link to Simulink from ModelSim
• vmatlabsysobj: link to MATLAB System object from ModelSim.

You can use these new ModelSim commands in place of the ModelSim vsim command.
These commands are used to load instances of VHDL entities or Verilog modules for
simulations that use MATLAB or Simulink for verification

The property name/property value pair settings allow you to customize the Tcl commands
used to start ModelSim, the vsim executable to be used, the path and name of the DO file
that stores the start commands, and for Simulink applications, details about the mode of
communication to be used by the applications.

Tip Use pingHdlSim to add a pause between the call to vsim and the call to actually run
the simulation when you are attempting to automate the cosimulation.

Property Name/Property Value Pairs
'libdir'

Specifies the path to HDL Verifier HDL libraries

3 Functions — Alphabetical List

3-60

• folder

Folder containing the libraries for ModelSim to communicate with MATLAB when
ModelSim runs on a machine that does not have MATLAB.

If this property is not set, the default path in the MATLAB installation is used.

'libfile'

Specifies a particular library file

• library_file_name

. This value defaults to the version of the library file that was built using the same
compiler that MATLAB itself uses. If the HDL simulator links other libraries,
including SystemC libraries, that were built using a compiler supplied with the HDL
simulator, you can specify an alternate library file with this property. See “HDL
Verifier Libraries” for versions of the library built using other compilers.

Do not include the OS-specific library extension in library_file_name.

'pingTimeout'

Time to wait, in seconds, for the HDL simulator to start.

• seconds

Specify 0 (the default) to immediately return without waiting.

'rundir'

Specifies where to run the HDL simulator

• dirname

By default, the function uses the current working folder.

The following conditions apply to this name/value pair:

• If the value of dirname is “TEMPDIR”, the function creates a temporary folder in
which it runs ModelSim.

• If you specify dirname and the folder does not exist, you will get an error.

 vsim

3-61

'runmode'

Specifies how to start the HDL simulator.

• mode

You can set run mode to one of the following values:

• 'Batch': Start the HDL simulator in the background with no window (Linux) or
in a non-interactive command window (Windows).

• 'CLI': Start the HDL simulator in an interactive terminal window.
• 'GUI': Start the HDL simulator with the ModelSim graphical user interface.

This value defaults to 'GUI'.

'socketmatlabsysobj'

Specifies TCP/IP socket communication for links between ModelSim and MATLAB.

• tcp_spec

For TCP/IP socket communication on a single computing system, the tcp_spec
can consist of just a TCP/IP port number or service name. If you are setting up
communication between computing systems, you must also specify the name or
Internet address of the remote host.

For more information on choosing TCP/IP socket ports, see “TCP/IP Socket Ports ”

If ModelSim and MATLAB run on the same computing system, you have the option
of using shared memory for communication. Shared memory is the default mode of
communication and takes effect if you do not specify -socket <tcp-spec> on the
command line.

Note: The function applies the communication mode specified by this property to all
invocations of MATLAB from ModelSim.

'socketsimulink'

Specifies TCP/IP socket communication for links between ModelSim and Simulink.

• tcp_spec

3 Functions — Alphabetical List

3-62

For TCP/IP socket communication on a single computing system, the tcp_spec
can consist of just a TCP/IP port number or service name. If you are setting up
communication between computing systems, you must also specify the name or
Internet address of the remote host.

For more information on choosing TCP/IP socket ports, see “TCP/IP Socket Ports ”

If ModelSim and Simulink run on the same computing system, you have the option
of using shared memory for communication. Shared memory is the default mode of
communication and takes effect if you do not specify -socket <tcp-spec> on the
command line.

Note: The function applies the communication mode specified by this property to all
invocations of Simulink from ModelSim.

'startms'

Determines whether ModelSim is launched from vsim.

• yes | no

This property defaults to yes, which launches ModelSim and creates a startup Tcl
file. If startms is set to no, ModelSim does not launch, but the HDL simulator still
creates a startup Tcl file.

This startup Tcl file contains pointers to MATLAB libraries. To run ModelSim on a
machine without MATLAB, copy the startup Tcl file and MATLAB library files to the
remote machine and start ModelSim manually. See “HDL Verifier Libraries”.

'startupfile'

Specifies Tcl script for startup

• pathname

Each invocation of vsim creates a Tcl script that is applied during HDL
simulator startup. By default, this function generates the filename of
compile_and_launch.tcl in the folder specified by rundir.. With this property,
you can specify the name and location of the generated Tcl script. If the file name
already exists, that file's contents are overwritten. You can edit and use the generated
file in a regular shell outside of MATLAB. For example:

 vsim

3-63

sh> vsim -gui -do compile_and_launch.tcl

'tclstart'

Specifies one or more Tcl commands to execute during ModelSim startup

• tcl_commands

Specify a command string or a cell array of command strings, with each entry being a
Tcl command. These commands are appended to the startup file.

'vsimdir'

Specifies the path name to the folder with the ModelSim simulator executable
(vsim.exe) to be started.

• pathname

By default, the function uses the first version of vsim.exe that it finds on the system
path (defined by the path variable) . Use this option to start different versions of the
ModelSim simulator or if the version of the simulator you want to run does not reside
on the system path.

Examples
The following function call sequence changes the folder location to VHDLproj and
then calls the function vsim. Because the call to vsim omits the 'vsimdir' and
'startupfile' properties, vsim uses the default vsim executable and creates a
temporary DO file in a temporary folder. The 'tclstart' property specifies a Tcl
command that loads an instance of a VHDL entity for MATLAB verification:

• The vsimmatlab command loads an instance of the VHDL entity parse in the
library work for MATLAB verification.

• The matlabtb command begins the test bench session for an instance of entity
parse, using TCP/IP socket communication on port 4449 and a test bench timing
value of 10 ns.

>>cd VHDLproj % Change folder to ModelSim project folder

>>vsim('tclstart','vsimmatlab work.parse; matlabtb parse 10 ns -socket 4449')

The following function call sequence changes the folder location to VHDLproj and then
calls the function vsim.

3 Functions — Alphabetical List

3-64

• Because the call to vsim omits the 'vsimdir' and 'startupfile' properties, vsim
uses the default vsim executable and creates a DO file in a temporary folder.

• The 'tclstart' property specifies a Tcl command that loads the VHDL entity
parse in the library work for cosimulation between vsim and Simulink.

• The 'socketsimulink' property specifies that TCP/IP socket communication on the
same computer is to be used for links between Simulink and ModelSim, using socket
port 4449.

>>cd VHDLproj % Change folder to ModelSim project folder

>>vsim('tclstart','vsimulink work.parse','socketsimulink','4449')

 vsimmatlab

3-65

vsimmatlab
Load instantiated HDL module for verification with ModelSim and MATLAB

Syntax
vsimmatlab <instance> [<vsim_args>]

Description

The vsimmatlab command loads the specified instance of an HDL module for
verification and sets up ModelSim so it can establish a communication link with
MATLAB. ModelSim opens a simulation workspace and displays a series of messages in
the command window as it loads the HDL module's packages and architectures.

This command is generally issued in the HDL simulator. It also may be run from the
HDL simulator prompt or from a Tcl script shell (tclsh).

Arguments

<instance>

Specifies the instance of an HDL module to load for verification.
<vsim_args>

Specifies one or more ModelSim vsim command arguments. For details, see the
description of vsim in the ModelSim documentation.

Examples

The following command loads the HDL module instance parse from library work
for verification and sets up ModelSim so it can establish a communication link with
MATLAB:

ModelSim> vsimmatlab work.parse

3 Functions — Alphabetical List

3-66

vsimulink
Load instantiated HDL module for cosimulation with ModelSim and Simulink

Syntax
vsimulink instance> [<vsim_args>]

Description

The vsimulink command loads the specified instance of an HDL module for
cosimulation and sets up ModelSim so it can establish a communication link with
Simulink. ModelSim opens a simulation workspace and displays a series of messages in
the command window as it loads the HDL module's packages and architectures.

This command is issued in the HDL simulator. The communication mode is determined
by the call to vsim, which must be issued before you call vsimulink.

Argument

<instance>

Specifies the instance of an HDL module to load for cosimulation.
<vsim_args>

Specifies one or more ModelSim vsim command arguments. For details, see the
description of vsim in the ModelSim documentation. Do not issue a command such as
vsim < command.do with this parameter.

Examples

The following command loads the HDL module instance parse from library work
for cosimulation and sets up ModelSim so it can establish a communication link with
Simulink:

ModelSim> vsimulink work.parse

 waitForHdlClient

3-67

waitForHdlClient
Wait until specified event ID is obtained or time-out occurs

Syntax

waitForHdlClient(TimeOut,EventID)

waitForHdlClient(TimeOut)

waitForHdlClient

output = waitForHdlClient(TimeOut,EventID)

Description

waitForHdlClient(TimeOut,EventID) waits for the expected HDL simulator
event ID to arrive at the MATLAB server (hdldaemon) before processing continues. If
the expected event ID arrives before the number of seconds specified by the TimeOut
parameter, the value returned by the HDL simulator is the HDL simulator process
identification (PID). Otherwise, the returned value is –1.

waitForHdlClient(TimeOut) waits for EventID = 1 for TimeOut seconds.

waitForHdlClient waits for EventID = 1 for 60 seconds.

output = waitForHdlClient(TimeOut,EventID) returns the process identification
(PID) in output. Although you are not required to provide an output variable, MATLAB
returns an error if a time-out occurs and the output argument is not specified.

Input Arguments

TimeOut

Number of seconds to wait for a response from the HDL simulator

EventID

The HDL simulator event ID. EventID must be a positive number less than the
maximum value of a 32-bit signed integer. The value should match the event ID sent by
the notifyMatlabServer command in the HDL simulator.

3 Functions — Alphabetical List

3-68

EventID can be either a scalar or vector value. If EventID is a vector, the function
return a value only if all elements of the vector have been collected or if a time-
out occurs. The returned output value is the same size as the event ID, and each
element of the output variable is the detected PID of the HDL simulator that sends the
corresponding event ID element.

Output Arguments

output

Output variable for holding returned value from call to waitForHdlClient. Contains
either the HDL simulator process identification (PID) or –1 if an error occurs.

Examples

Wait for event ID 2 for 120 seconds.

>> hdlpid = waitForHdlClient(120, 2);

See Also
notifyMatlabServer

